1950 g This is the answer due to the kilograms of lead being distributed
The plant that is closest to the sun is murcury. Then it is venus, then earth, and then mars. Then it is jupiter, then saturn, then uranus, then neptune.
Answer:
b) True. the force of air drag on him is equal to his weight.
Explanation:
Let us propose the solution of the problem in order to analyze the given statements.
The problem must be solved with Newton's second law.
When he jumps off the plane
fr - w = ma
Where the friction force has some form of type.
fr = G v + H v²
Let's replace
(G v + H v²) - mg = m dv / dt
We can see that the friction force increases as the speed increases
At the equilibrium point
fr - w = 0
fr = mg
(G v + H v2) = mg
For low speeds the quadratic depended is not important, so we can reduce the equation to
G v = mg
v = mg / G
This is the terminal speed.
Now let's analyze the claims
a) False is g between the friction force constant
b) True.
c) False. It is equal to the weight
d) False. In the terminal speed the acceleration is zero
e) False. The friction force is equal to the weight
Answer:
5.7 x 10^12 C
Explanation:
Let the charge on earth and moon is q.
mass of earth, Me = 5.972 x 10^24 kg
mass of moon, Mm = 7.35 x 10^22 kg
Let d be the distance between earth and moon.
the gravitational force between them is

The electrostatic force between them is

According to the question
1 % of Fg = Fe



q = 5.7 x 10^12 C
Thus, the charge on earth and the moon is 5.7 x 10^12 C.
Answer: 576.48 N*m^2/C
Explanation: In order to calculate the electric flux through the any surface we have to take into account the scalar product between the electric field vector and the normal vector to the surface.
So we have:
ФE= E*A= 1.33 * 10^4*0.0518* cos (33.2°)= 576.48 N*m^2/C