2nd and only 2nd option is right
Answer:
5070
Explanation:
add them up and then you get <em>your</em><em> </em><em>answers</em><em> </em>
Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San
Answer:
Momentum of block B after collision =
Explanation:
Given
Before collision:
Momentum of block A =
= 
Momentum of block B =
= 
After collision:
Momentum of block A =
= 
Applying law of conservation of momentum to find momentum of block B after collision
.

Plugging in the given values and simplifying.


Adding 200 to both sides.


∴ 
Momentum of block B after collision =
C is the right image for that biological process.