Explanation:
Relation between potential energy and charge is as follows.
U = qV
or, 
= 
=
J
or, = 
Therefore, we can conclude that change in the electrical potential energy
is
.
Answer:
b. 88, 222
Explanation:
235U₉₂ ----→ Alpha --------→ 231P₉₀ ----→- beta -----→ 231Q₉₁ ------→-beta -------→231R₉₂--------→-alpha ------→-227S₉₀ ------→ gamma -----→-227S₉₀ ----------→ neutron ------→-226T₉₀-----------→ alpha --------→222 X ₈₈
Atomic No is 88 , atomic weight = 222 .
Answer:
The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Explanation:
Given;
coefficient of kinetic friction, μ = 0.84
speed of the automobile, u = 29.0 m/s
To determine the the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;
v² = u² + 2ax
where;
v is the final velocity
u is the initial velocity
a is the acceleration
x is the shortest distance
First we determine a;
From Newton's second law of motion
∑F = ma
F is the kinetic friction that opposes the motion of the car
-Fk = ma
but, -Fk = -μN
-μN = ma
-μmg = ma
-μg = a
- 0.8 x 9.8 = a
-7.84 m/s² = a
Now, substitute in the value of a in the equation above
v² = u² + 2ax
when the automobile stops, the final velocity, v = 0
0 = 29² + 2(-7.84)x
0 = 841 - 15.68x
15.68x = 841
x = 841 / 15.68
x = 53.64 m
Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Low mass: Live for billions (trillions?) of years. The first low mass red dwarfs in this universe still haven't died off yet, so we aren't completely sure what happens when they "die."
<span>Very High Mass: Run through their fuel exceedingly fast. *Die* relatively quickly (in the range of tens to hundreds of millions of years instead of billions and beyond) and go out with style, Supernova that will leave behind a neutron star (the *kind of very high mass stars" end this way) or a black hole (the *very very high mass stars* end this way.)</span>
PE = mass * height * 9.81
PE = 142 * 25 * 9.81
PE = 34825.5 J