The answer to this item is TRUE. This can be explained through the Graham's law. This law states that the rate at which gases diffuse is inversely proportional to the square root of their densities which is also related to their molecular masses.
Answer:
4.4g
Explanation:
Mass of CaCO3 = 10g
Mass of CaO = 5.6g
Mass of CO2 =?
Mass of CaCO3 = Mass of CaO + Mass of CO2
Mass of CO2 = Mass of CaCO3 — Mass of CaO
Mass of CO2 = 10 — 5.6
Mass of CO2 = 4.4g
Answer:
Density of the object is 8759.494 grams/L
Explanation:
As we know density of an object is mass of the object divided by its volume
Given
Volume of the object is equal to the change in volume of water with in the cylinder when the object was immersed in water.
Hence, volume of object is equal to
mL
Mass of the object is
grams
Density
grams/L
Density of the object is 8759.494 grams/L
<span>There
are a number of ways to express concentration of a solution. This includes
molarity. Molarity is expressed as the number of moles of solute per volume of
the solution. So, we calculate as follows:
Molarity = 15.9 g BaCl2 ( 1 mol / 208.23 g ) / .375 L = 0.204 mol / L</span>
1.56 moles of N2 are needed to fill a 35 L tank at standard temperature and pressure. Details about moles can be found below.
<h3>How to calculate number of moles?</h3>
The number of moles of a substance can be calculated using the following formula:
PV = nRT
Where;
- P = pressure
- V = volume
- n = number of moles
- R = gas law constant
- T = temperature
At STP;
- T = 273K
- P = 1 atm
- R = 0.0821 Latm/molK
1 × 35 = n × 0.0821 × 273
35 = 22.41n
n = 35/22.41
n = 1.56mol
Therefore, 1.56 moles of N2 are needed to fill a 35 L tank at standard temperature and pressure.
Learn more about number of moles at: brainly.com/question/14919968
#SPJ1