Answer:
116.3 grCO2
Explanation:
1st - we balance the equation so that it finds the same amount of elements of the product side and of the reagent side
C6H6 +15/2 O2⟶ 6CO2 +3 H2O
2nd - we calculate the limiting reagent
39.2gr C6H6*(240grO2/78grC6H6)=120 grO2
we don't have that amount of oxygen so this is the excess reagent and oxygen the limiting reagent
3rd - we use the limiting reagent to calculate the amount of CO2 in grams
105.7grO2*(264grCO2/240grO2)=116.3 grCO2
1 mL = 1 cm³
D = m / V
0.7857 = m / 17.16
m = 0.7857 x 17.16
m = 13.482 g
2H₂₍g₎ + O₂ ₍g₎→ 2H₂O
138 mol H₂ × (2 mol H₂O ÷ 2 mol H₂)= 138 mol H₂O
64 mol O₂ × (2 mol H₂O ÷ 1 mol O₂)= 128 mol H₂O
128 mol H₂O
Answer:
The answer is B. Compressions and rarefactions.
Explanation:
- <u><em>Longitudinal sound waves are waves of alternating pressure deviations from the equilibrium pressure, causing local regions of compression and rarefaction.</em></u>