<u>Answer</u>: option B they have a random gene mutation that affects their fur colour.
<u>Explanation</u> :-
- <em>Variation</em> is the phenomena which occurs in all populations.
- These variations result in slight differences in the phenotypes of individuals .
- These variations only arise due to <em>random mutations </em>that arise in the individuals’ genome and then can be inherited by their offspring.
- There is always a probability of one particular trait to make the individuals survive better in the environment as compared to other trait.
- The individuals having the trait that helps them to survive better in the environment tend to survive more and leave more progeny. This is termed as <em>survival of the fittest</em>.
- Thus, according to the question it can be inferred that the dark fur colour arose due to a <em>random mutation </em>since it is the only source of variation. Since, in the given environmental conditions the mice having the dark fur colour were less susceptible to the predators they are better fitted to survive.
- The dark brown fur coat mice, survive better, leave more progeny and hence, increase their population with time. However, the orginal source of origin of this trait was a random mutation. Had this mutation not occured, the dark coloured fur mice would not have been there.
So, a <em>random gene mutation affecting the fur colour made the dark coloured mice first appear in the population.</em>
Answer:
Insulators
Explanation:
The purpose of insulators are to convert the energy into thermal or heat energy
Answer:
The options
a. New combinations of genes yielding genotypes of greater fitness
b. Few heterozygotes because of underdominance
c. Frequency-dependent selection, leading to fluctuations in fitness
d. Heterozygotes with greater fitness, owing to overdominance
e. A random assortment of genotypes because of genetic drift
The CORRECT ANSWER IS b.
b. Few heterozygotes because of under dominance
Explanation:
In genetics, underdominance (at times called "negative overdominance") is the opposite of overdominance.
It is the selection against the heterozygote, that leads to disruptive selection and divergent genotypes. It occurs in cases of inferior and reduced fitness (As in our case study, it is the different chromosomal fusions and inversions)
of the heterozygotic genotype to the dominant or recessive homozygotic genotype. It is unstable as it causes fixation of either allele.
Another example is the African butterfly species Pseudacraea eurytus, which makes use of Batesian mimicry to avoid predation. This species carries two alleles that gives a coloration that is alike to a different local butterfly species that is harmful to its predator. The butterflies who are heterozygous for this trait are observed to be intermediate in coloration and thus encounter an higher risk of predation and a decrease in the total fitness.