Answer:
Percent yield of PI3 = 95.4%
Explanation:
This is the reaction:
2P (s) + 3I2 (g) > 2PI3 (g)
Let's determine the moles of iodine that has reacted.
58.6 g / 253.8 g/mol = 0.231 mol
Ratio is 3:2. Let's make a rule of three to state the moles produced at 100 % yield reaction.
3 moles of I2 react to make 2 moles of PI3
0.231 moles of I2 would make (0.231 .2) / 3 = 0.154 moles of PI3
As we have produced 0.147 moles let's determine the percent yield.
(Yield produced / Theoretical yield) . 100 > (0.147 / 0.154) . 100 = 95.4%
Answer:
G]ns^2np^5 group 17 (p-block)
G]ns^2np^2 group 14 (p-block)
G]ns^2mf^14 group 16 (f-block)
Explanation:
The outermost electronic configuration of an element shows the group to which it belongs in the periodic table as shown above in the answer. In addition, to that, we can be able to know from its electronic configuration, whether the element is a metal or not.
For instance;
G]ns^2mf^14 is a rare earth metal, G]ns^2np^2 group 14 is a metalloid while G]ns^2np^5 group 17 is a nonmetal.
The number of grams of Cl2 formed when 0.385 mol HCl reacts with an excess of O2 is 13.6675 g.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 ×
of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
Given data:
Moles of hydrochloric acid = 0.385 mol
Mass of chlorine gas =?
Chemical equation:
4HCl + O₂ → 2Cl₂ + 2H₂O
Now we will compare the moles of Cl₂ with HCl.
HCl : Cl₂
4 : 2
0.385 : 2÷4× 0.385 = 0.1925 mol
Oxygen is present in excess that's why the mass of chlorine produced depends upon the available amount of HCl.
Mass of Cl₂ :
Mass of Cl₂ = moles × molar mass
Mass of Cl₂ =0.1925 mol × 71 g/mol
Mass of Cl₂ = 13.6675 g
Hence, the number of grams of Cl2 formed when 0.385 mol HCl reacts with an excess of O2 is 13.6675 g.
Learn more about moles here:
brainly.com/question/8455949
#SPJ1
Answer:
Fe³⁺(aq) + 3 OH⁻(aq) → Fe(OH)₃(s)
Explanation:
First, we will write the molecular equation because it is the easiest to balance.
FeCl₃(aq) + 3 KOH(aq) → Fe(OH)₃(s) + 3 KCl(aq)
The full ionic equation includes all the ions and the molecular species.
Fe³⁺(aq) + 3 Cl⁻(aq) + 3 K⁺(aq) + 3 OH⁻(aq) → Fe(OH)₃(s) + 3 K⁺(aq) + 3 Cl⁻(aq)
The net ionic equation includes only the ions that participate in the reaction and the molecular species.
Fe³⁺(aq) + 3 OH⁻(aq) → Fe(OH)₃(s)