Answer:
the molecules move more quickly and their average kinetic energy decreases :D
Explanation:
Answer:
Heat required to melt 26.0 g of ice at its melting point is 8.66 kJ.
Explanation:
Number of moles of water in 26 g of water: 26×
moles
=1.44 moles
The enthalpy change for melting ice is called the entlaphy of fusion. Its value is 6.02 kj/mol.
we have relation as:
q = n × ΔH
where:
q = heat
n = moles
Δ
H = enthalpy
So calculating we get,
q= 1.44*6.02 kJ
q= 8.66 kJ
We require 8.66 kJ of energy to melt 26g of ice.
Answer:
None of the options are correct. The correct answer is:
56.67g
Explanation:
N2 + 3H2 —> 2NH3
Molar Mass of NH3 = 14 + (3x1) = 14 + 3 = 17g/mol
Mass of NH3 from the balanced equation = 2 x 17 = 34g
Molar Mass of H2 = 2x1 = 2g/mol
Mass of H2 from the balanced equation = 3 x 2 = 6g
From the equation,
6g of H2 produced 34g of NH3.
Therefore, 10g of H2 will produce = (10 x 34)/6 = 56.67g of NH3
Therefore, 56.67g of NH3 are produced
Answer:
answer-
The relative atomic mass = 204.4
explanation:
Thallium -203 = 30%
Thallium -205 = 70%
Therefore ,
relative mass of thallium = (30×203 + 70×205)/100
relative mass of thallium = (20440)/100
relative mass of thallium = 204.40 amu
Thus,
relative atomic mass of thalium =204.4 ( to 1 decimal place)
Waters high heat capacity is a property focused by hydrogen bonding among water molecules.When heat is absorbed,hydrogen bonds are broken and water molecules can move freely.When the temperature of water decreases, the hydrogen bonds are formed and release a considerable amount of energy