Answer:
The magnitude of momentum of the airplane is
.
Explanation:
Given that,
Mass of the airplane, m = 3400 kg
Speed of the airplane, v = 450 miles per hour
Since, 1 mile per hour = 0.44704 m/s
v = 201.16 m/s
We need to find the magnitude of momentum of the airplane. It is given by the product of mas and velocity such that,



or

So, the magnitude of momentum of the airplane is
. Hence, this is the required solution.
Mass is measured in kg
Velocity is measured in ms^-1
Hope this is what you were looking for
The density, hard, strong, and rough.
Answer:
True
Explanation:
An electric field is a region around a charged particle or object within which a force would be exerted on other charged particles or objects.
44.64m
Explanation:
Given parameters:
Mass of the car = 1500kg
Initial velocity = 25m/s
Frictional force = 10500N
Unknown:
Distance moved by the car after brake is applied = ?
Solution:
The frictional force is a force that opposes motion of a body.
To solve this problem, we need to find the acceleration of the car. After this, we apply the appropriate motion equation to solve the problem.
-Frictional force = m x a
the negative sign is because the frictional force is in the opposite direction
m is the mass of the car
a is the acceleration of the car
a =
=
= -7m/s²
Now using;
V² = U² + 2as
V is the final velocity
U is the initial velocity
a is the acceleration
s is the distance moved
0² = 25² + 2 x 7 x s
0 = 625 - 14s
-625 = -14s
s = 44.64m
learn more:
Velocity problems brainly.com/question/10932946
#learnwithBrainly