Answer:
Here's the equation for net force: F = ma. The work done on the plane, which becomes its kinetic energy, equals the following: Net force F equals mass times acceleration. Assume that you're pushing in the same direction that the plane is going; in this case, cos 0 degrees = 1, so.
Explanation:
In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes
Hope this help also looking it up helps ;)
Answer:
3.14 × 10⁻⁴ m³ /s
Explanation:
The flow rate (Q) of a fluid is passing through different cross-sections remains of pipe always remains the same.
Q = Area x velocity
Given:
Diameters of 3 sections of the pipe are given as
d1 = 1.0 cm, d2 = 2.0 cm and d3 = 0.5 cm.
Speed in the first segment of the pipe is
v1 = 4 m/s.
From the equation of continuity the flow rate through different cross-sections remains the same.
Flow rate = Q = A1 v1 = A2 v2 = A3 v3.
Q = A1v1
=π/4 d²1 v1 = π/4 * 0.01² ×4.0 m³/s = 3.14 × 10⁻⁴ m³ /s
Answer:
A) a = 73.304 rad/s²
B) Δθ = 3665.2 rad
Explanation:
A) From Newton's first equation of motion, we can say that;
a = (ω - ω_o)/t. We are given that the centrifuge spins at a maximum rate of 7000rpm.
Let's convert to rad/s = 7000 × 2π/60 = 733.04 rad/s
Thus change in angular velocity = (ω - ω_o) = 733.04 - 0 = 733.04 rad/s
We are given; t = 10 s
Thus;
a = 733.04/10
a = 73.304 rad/s²
B) From Newton's third equation of motion, we can say that;
ω² = ω_o² + 2aΔθ
Where Δθ is angular displacement
Making Δθ the subject;
Δθ = (ω² - ω_o²)/2a
At this point, ω = 0 rad/s while ω_o = 733.04 rad/s
Thus;
Δθ = (0² - 733.04²)/(2 × 73.304)
Δθ = -537347.6416/146.608
Δθ = - 3665.2 rad
We will take the absolute value.
Thus, Δθ = 3665.2 rad
Passive transport occurs thanks to diffusion, diffusion is the reason passive transport is able to travel throughout the cell membrane.
just swim In water and find your shoe