1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kicyunya [14]
3 years ago
5

Bud, a very large man of mass 130 kg, stands on a pogo stick. How much work is

Physics
1 answer:
Travka [436]3 years ago
6 0

Answer:

64 J

Explanation:

W = ΔPE

W = mgΔh

W = (130 kg) (9.8 m/s²) (0.050 m)

W = 64 J

You might be interested in
The diagram shows two charged objects, X and Y.
masya89 [10]

The missing diagram is in the attachments.

Answer: X: positive Y: positive

Explanation: Electric field is a vector quantity, which means it can be represented by a vector arrow: the arrow points in the direction of electric field and its length represents the magnitude at a given location. There are another representation of the electric field called electric field lines, <u>in which the line points away from a positively charged source and towards a negatively charged source</u>. This occurs because it follows a pattern, where the lines points in the direction that a positive test charge would have if it is accelerating on the line.

Analyzing the diagram, it can be observed that the lines are pointing away from both of the charged objects. Therefore, both X and Y are <u>positively charged</u>.

4 0
3 years ago
Read 2 more answers
Consider three identical electric bulbs of power P. Two of bulbs are connected in series and the third one is connected in paral
Tamiku [17]

Answer: 3P/2

Explanation: Let the resistance of the bulbs be R.

now lets consider a Voltage V is supplied to the parallel circuit  such that

P=VI=V^2/R

V=IR

both single bulb( bulb 3) and the two bulbs ( bulb 1 and bulb 2) are provided the same Voltage

( as the voltage remains same in parallel circuit)

we can calculate the Current across both circuits

At Bulb 3

Current 1=V/R

Power1=Voltage * Current1

Power1=V*V/R

Power1=P

At Bulb 1 and Bulb 2

Total Resistance= R+R=2R

Current2=\frac{V}{2R}

Power2=Voltage * Current2

Power2=V*\frac{V}{2R} \\Power2=\frac{V^2}{2R} \\Power2=P/2

TotalPower=Power1+Power2\\TotalPower=P+P/2\\TotalPower=\frac{3P}{2}

6 0
3 years ago
Suspend a heavy weight by two pieces of rope. Tension is greatest when the ropes
bija089 [108]
Assuming that the angle is the same for both ropes, then D. is the answer.  You have to consider also if the ropes are close together or far apart and if the force to move the object is in line with the ropes or perpendicular to them.
<span />
3 0
3 years ago
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
3 years ago
A piano mover raises a 1000-n piano at a constant speed using a very light rope in a frictionless pulley system, as shown in the
Rina8888 [55]

Here As we can see the figure that the end of the rope is pulled by some force F

Now as we can see that Piano is connected by a pulley which is passing over the pulley so effectively net force on the piano upwards will be 2F as it is connected by 2 ropes by the pulley

Now for constant velocity of the piano we will say

2F - mg = ma

since velocity is constant so acceleration must be ZERO

so here we have

2F - mg = 0

as we know here that

mg = 1000 N

so we will have

2F - 1000 = 0

F = 500 N

so here force must be 500 N

5 0
4 years ago
Read 2 more answers
Other questions:
  • In a real machine, the work output is always less than the work input.<br> a. True<br> b. False
    9·1 answer
  • Coal is considered to be a non-renewable energy source. Which of the following statements is correct? a. Coal is a scarce resour
    14·1 answer
  • How are speed and velocity similar ?
    9·2 answers
  • Most of earth's atmosphere is composed of
    12·1 answer
  • I am detained how will i be able to get out?
    13·1 answer
  • The worlds fastest humans can reach speeds of about 11 m/s in order to increase his gravitational potential energy by an amount
    5·1 answer
  • A steel safe with mass M falls onto a concrete floor. Just before hitting the floor, its speed is vi . It hits the floor without
    12·1 answer
  • The first step in turning a rock into a sediment is ________. Select one:
    14·1 answer
  • La corriente que fluye por una resistencia es
    11·1 answer
  • Làm thế mào để kiểm tra một lục ma sát trược
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!