Elastic potential energy is equal to the force times the distance of movement. Elastic potential energy = force x distance of displacement. Because the force is = spring constant x displacement, then the Elastic potential energy = spring constant x displacement squared.
Answer:
Cruising at 35,000 feet in an airliner, straight toward the east,
at 500 miles per hour
Explanation:
Answer:
The mass of the banana is m and it is at height h.
Applying the Law of Conservation of Energy
Total Energy before fall = Total Energy after fall
=
Here, total energy is the sum of kinetic energy and potential energy
+
=
+
(a)
When banana is at height h, it has
= 0 and
= mgh
and when it reaches the river, it has
= 1/2m
and
= 0
Putting the values in equation (a)
0 + mgh = 1/2m
+ 0
mgh = 1/2m
<em>cutting 'm' from both sides</em>
<em> </em>gh = 1/2
v = 
Hence, the velocity of banana before hitting the water is
v = 
Answer:
You may experience the sudden onset of one or more symptoms, such as: Numbness, tingling, weakness, or inability to move a part or all of one side of the body (paralysis). Dimness, blurring, double vision, or loss of vision in one or both eyes. Loss of speech, trouble talking, or trouble understanding speech.
Request: Please mark me as the brainliest.