Explanation:
A low-pressure area, or "low", is a region where the atmospheric pressure at sea level is below that of surrounding locations. Low-pressure systems form under areas of wind divergence that occur in upper levels of the troposphere.
Answer:
An increase
Explanation:
The strong southerly winds affect the vapor pressure by increasing it .
When the vapor pressure increases it means an increase in temperature and more evaporation occurs.
A decrease in the vapor pressure means a reduction in temperature with less amount of evaporation being involved
Explanation:
Formula to calculate work done by motor is as follows.
Work done by motor =
where, g = gravitational constant = 10
Therefore, work done by motor is as follows.
Work done by motor =
= 100.0 J
Now, heat lost by water will be calculated as follows.
q =
=
= 10.0 J
Hence, heat gained by motor = heat lost by water
As, heat gained by motor = 10.0 J
So, change in energy = heat gained - work done
Therefore, change in energy will be calculated as follows.
Change in energy = heat gained - work done
= (10.0 J) - (100.0 J)
= -90.0 J
Thus, we can conclude that change in the energy of the battery contents is -90.0 J.
Answer:
- 602 mg of CO₂ and 94.8 mg of H₂O
Explanation:
The<em> yield</em> is measured by the amount of each product produced by the reaction.
The chemical formula of <em>fluorene</em> is C₁₃H₁₀, and its molar mass is 166.223 g/mol.
The <em>oxidation</em>, also know as combustion, of this hydrocarbon is represented by the following balanced chemical equation:

To calculate the yield follow these steps:
<u>1. Mole ratio</u>

<u />
<u>2. Convert 175mg of fluorene to number of moles</u>
- Number of moles = mass in grams / molar mass
<u>3. Set a proportion for each product of the reaction</u>
a) <u>For CO₂</u>
i) number of moles


ii) mass in grams
The molar mass of CO₂ is 44.01g/mol
- mass = number of moles × molar mass
- mass = 0.013686 moles × 44.01 g/mol = 0.602 g = 602mg
b) <u>For H₂O</u>
i) number of moles

ii) mass in grams
The molar mass of H₂O is 18.015g/mol
- mass = number of moles × molar mass
- mass = 0.00526 moles × 18.015 g/mol = 0.0948mg = 94.8 mg
Answer : Option D) The particles move enough that they are not fixed in place, and the liquid can flow.
Explanation : The kinetic energy of the particles are allowed to move freely and are in motion when in the liquid state whereas the intermolecular particles can just flow; as the intermolecular attractions between the particles allows the liquid to flow by giving them a force to flow.