Answer:
The correct answer is <u>option (A) that is KEA > KEB .</u>
Explanation:
Let us calculate -
If the object is straighten up and inclined plane , the work done is


The change in kinetic energy is ,

At the top of the inclined plane , the velocity is zero
So,


From the work energy theorem , we have
in case of friction , so


For object A-

For object B


Thus , larger mass is going to mean less total work and a lower kinetic energy .
From the above results , we get

<u>Therefore , option A is correct .</u>
We see that around us there are many things that makes use of circuits to make our lives easier Circuits are used to convert electrical energy to other forms of energy. For instance, a heater contains circuits which converts the electrical energy into heat. A circuit in a fan converts the electrical energy into motion. In a doorbell, the circuits are used to convert electrical energy into sound.<span />
<span>A. </span>Let’s
say the horizontal component of the velocity is vx and the vertical is vy. <span>
Initially at t=0 (as the mug leaves the counter) the
components are v0x and v0y.
<span>v0y = 0 since the customer slides it horizontally so applied
force is in the x component only.
<span>The equations for horizontal and vertical projectile motion
are:
x = x0 + v0x t
y = y0 + v0y t - 1/2 g t^2 = y0 - 1/2 g t^2 </span></span></span>
Setting the origin to be the end corner of the
counter so that x0=0 and y0=0, hence:
x = v0x t
y = - 1/2 g t^2
Given value are: x=1.50m and y=-1.15m (y is
negative since mug is going down)
<span>1.50m = v0x t
----> v0x= 1.50/t</span>
<span>-1.15m = -(1/2) (9.81) t^2 -----> t =0.4842 s</span>
Calculating for v0x:
v0x = 3.10 m/s
<span>B. </span>v0x
is constant since there are no other horizontal forces so, v0x=vx=3.10m/s
vy can be calculated from the formula:
<span>vy = v0y + at where a=-g
(negative since going down)</span>
vy = -gt = -9.81 (0.4842)
vy = -4.75 m/s
Now to get the angle below the horizontal, tan(90-Ø) = -vx/vy
tan(90-Ø )= 3.1/4.75
Ø =
56.87˚<span> below the horizontal</span>
Answer:
12N
Explanation:
when a force is applied to a body but still stays at rest or moves at a constant speed , the frictional force is equal to the force applied