Covalent compounds are generally not very hard because they are formed by two or more nonmetallic atoms.
<h3>COVALENT COMPOUNDS:</h3>
Covalent compounds are compounds whose constituent elements are joined together by covalent bonds.
Covalent bonding occurs when two or more nonmetallic atoms of an element share valence electrons. This means that covalent compounds will not be physically hard since they constitute non-metals.
Examples of covalent compounds are:
- H2 - hydrogen
- H2O - water
- HCl - hydrogen chloride
- CH4 - methane
Learn more about covalent compounds at: brainly.com/question/21505413
The reaction between the reactants would be:
CH₃NH₂ + HCl ↔ CH₃NH₃⁺ + Cl⁻
Let the conjugate acid undergo hydrolysis. Then, apply the ICE approach.
CH₃NH₃⁺ + H₂O → H₃O⁺ + CH₃NH₂
I 0.11 0 0
C -x +x +x
E 0.11 - x x x
Ka = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
Since the given information is Kb, let's find Ka in terms of Kb.
Ka = Kw/Kb, where Kw = 10⁻¹⁴
So,
Ka = 10⁻¹⁴/5×10⁻⁴ = 2×10⁻¹¹ = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
2×10⁻¹¹ = [x][x]/[0.11-x]
Solving for x,
x = 1.483×10⁻⁶ = [H₃O⁺]
Since pH = -log[H₃O⁺],
pH = -log(1.483×10⁻⁶)
<em>pH = 5.83</em>
Answer:
Total mass of the reactant = 2+2.5 =4.5 mg
Total mass of product = 4.15 mg
therefore, mass of unreacted oxygen = 4.50-4.15 = 0.35 g
Answer:
8.2 x 106^-11
Explanation:
To begin this problem you must remember the basic rule of scientific notation, which is, must be between 1-10. .000000000082 is much smaller than 1. However by moving the decimal 11 spots to the right, we can make it 8.2
Continue to move the decimal to the right until the value is in the 1-10 range. Make sure to count the moves to the right.
Once the decimal is in the right spot count the spots moved.
Since the number is wayyy smaller than the answer given the number will be negative 10^-11, in order to make it what is was before.
Answer: so the answer is A
Explanation: The relationship between an object's mass (m), its acceleration (a), and the applied force (f) is F=ma. ... This law requires that the direction of the acceleration vector is in the same direction as the force vectors.