Answer:
175 kJ
Explanation:
Activation energy can be defined as the potential energy that is needed to change reactants to products. This is the minimum energy required for the chemical reaction to take place. Thus, using the given figure:
Activation energy = activation complex - reactant energy
In the given figure, activation complex = 400 kJ
reactant energy = 225 kJ
Therefore:
Activation energy = 400 - 225 = 175 kJ
Answer:
![\frac{[magenta\ phenolphthalein]}{[colorless\ phenolphthalein]}=31.62](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bmagenta%5C%20phenolphthalein%5D%7D%7B%5Bcolorless%5C%20phenolphthalein%5D%7D%3D31.62)
Explanation:
Considering the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution as:
Where Ka is the dissociation constant of the acid.
pKa of phenolphthalein = 9.40
pH = 10.9
So,
![\frac{[magenta\ phenolphthalein]}{[colorless\ phenolphthalein]}=31.62](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bmagenta%5C%20phenolphthalein%5D%7D%7B%5Bcolorless%5C%20phenolphthalein%5D%7D%3D31.62)
Answer:
The mass of the surrounding is 
Explanation:
From the question we are told that
The mass of
is 
The mass of water is 
The chemical equation for the dissociation process is

The specific heat capacity of the mixture is 
The combined mass of the solution is

The mass of the surround here is the mass of the coffee-cup calorimeter and this contain the mixture ( water and the NaOH ) so the mass of the surrounding is

Answer:
The alkaline hydrolysis of ester is known as saponification. When ester is heated with aqueous NaOH, sodium salt of acid and alcohol are formed.