This question is incomplete, the complete question is;
A weightlifter holds a 1,300 N barbell 1 meter above the ground. One end of a 2-meter-long chain hangs from the center of the barbell. The chain has a total weight of 400 N. How much work (in J) is required to lift the barbell to a height of 2 m?
What is the average force (average with respect to height of the barbell from the ground) exerted by the weightlifter in the process?
Answer: Average force exerted by the weightlifter in the process = 1600N
Explanation:
To find Work done to lift a barbell and half of the hanging chain we say;
W₁ = ( 1300N + (1/2 × 400N)) × 1m
W₁ = (1300 + 200) Nm
W₁ = 1500J
now work done to lift the upper half of the chain we say:
W₂ = (1/2 × 400N) × (1/2 × 1m)
W₂ = 200N × 0.5m
W₂ = 100J
So total work done will be
W = W₁ + W₂
W = 1500J + 100J
W = 1600J
To find the average force exerted by the weight lifter, we say;
F = W/D
F = (1600 / 1m) N
F = 1600N
∴Average force = 1600N
The solution would be like
this for this specific problem:
<span>5.5 g = g + v^2/r </span><span>
<span>4.5 g =
v^2/r </span>
<span>v^2 = 4.5
g * r </span>
<span>v = sqrt
( 4.5 *9.81m/s^2 * 350 m) </span>
v = 124
m/s</span>
So the pilot will black out for this dive at 124
m/s. I am hoping that these answers have satisfied your query and it
will be able to help you in your endeavors, and if you would like, feel free to
ask another question.
I think the correct question would be, how do you measure sound. :)
you measure sound by using amplitude. It measures how forceful the sound is.
Thats how you know whether its loud or quite :)
<span />
Answer:
Hope the answer helped you. if yes pls follow me
Explanation:
the fundamental answer is without regular supervision of definition of weights and measures,commerce exchange will be impossible and there would be no market whatsoever for anything.