funny, actually, i'm a hydraulic, and pneumatic cylinder, pump, and line system mechanic, and the answer is pressure.... pressure builds up from the hydraulic pump, and then transfers through hoses to extend, and contract the cylinders by filling them with hydraulic fluid, and vice versa for contracting them.
hope this helps!
D = (1/2)·at²
where d is the distance fallen, a is the acceleration (g in this problem), and t is the time
d = (1/2)·(9.8 m/s²)·(30 s)² = (1/2)·(9.8)·(900) m
d = 4410 m
The answer is b) 4410 m
Note: the mass of the raindrop is irrelevant since the acceleration due to gravity is independent of mass. (Galileo's Leaning Tower of Pisa experiment)
Answer: option 1 : the electric potential will decrease with an increase in y
Explanation: The electric potential (V) is related to distance (in this case y) by the formulae below
V = kq/y
Where k = 1/4πε0
Where V = electric potential,
k = electric constant = 9×10^9,
y = distance of potential relative to a reference point, ε0 = permittivity of free space
q = magnitude of electronic charge = 1.609×10^-19 c
From the formulae, we can see that q and k are constants, only potential (V) and distance (y) are variables.
We have that
V = k/y
We see the potential(V) is inversely proportional to distance (y).
This implies that an increase in distance results to a decreasing potential and a decrease in distance results to an increase in potential.
This fact makes option 1 the correct answer
The correct choice is
D. 22 Hz and 42 Hz.
In fact, the beat frequency is given by the difference between the frequencies of the two waves:
In this problem, the beat frequency is , therefore the only pair of frequencies that gives a difference equal to 20 Hz is
D. 22 Hz and 42 Hz.
<span>Potassium carbonate (K2C03) is white salt and is often </span>found damp. It is soluble in water which makes a strong concoction. Hope this helps.