Answer: La fragilidad es la propiedad de algunos metales de no poder experimentar deformaciones plásticas, de forma que al superar su límite elástico se rompen bruscamente. La acritud es la propiedad de un metal para aumentar su dureza y su resistencia por el efecto de las deformaciones.
Explanation: y estas en el Brianly de ingles no el de español.
Answer:
Answer E.
For a collision to be completely elastic, there must be NO LOSS in kinetic energy.
We can go through each answer choice:
A. Since the ball rebounds at half the initial speed, there is a loss in kinetic energy. This is NOT an elastic collision.
B. A collision involving sticking is an example of a perfectly INELASTIC collision. This is NOT an elastic collision.
C. A reduced speed indicates that there is a loss of kinetic energy. This is NOT elastic.
D. The balls traveling at half the speed after the collision indicates a loss of kinetic energy, making this collision NOT elastic.
E. This collision indicates an exchange of velocities, characteristic of an elastic collision. We can prove this:
Let:
m = mass of each ball
v = velocity
We have the initial kinetic energy as:
KE = \frac{1}{2}mv^2 + 0 = \frac{1}{2}mv^2KE=21mv2+0=21mv2
And the final as:
KE = 0 + \frac{1}{2}mv^2 = \frac{1}{2}mv^2KE=0+21mv2=21mv2
Answer:
Ammonium nitrate, (NH4NO3), a salt of ammonia and nitric acid, used widely in fertilizers and explosives. The commercial grade contains about 33.5 percent nitrogen, all of which is in forms utilizable by plants; it is the most common nitrogenous component of artificial fertilizers.
<span>In the formation of a solution,
energy is required to overcome the forces of attraction between the solvent
particles. The first step is for the solvent particles to move in order for
solute particles to enter the system. This process is endothermic where energy
flows into the system. The second step is when solute particles must separate
from other solute particles. Lastly, the solute should move between solvent
particles.</span>