The columns of the periodic table, also referred to as "groups" contain elements with similar reactive properties, due to these elements having a similar configuration of electrons in their outer shell.
Answer:
physcial change
Explanation:
As it has visible changes on shape and size
This problem is providing the basic dissociation constant of ibuprofen (IB) as 5.20, its pH as 8.20 and is requiring the equilibrium concentration of the aforementioned drug by giving the chemical equation at equilibrium it takes place. The obtained result turned out to be D) 4.0 × 10−7 M, according to the following work:
First of all, we set up an equilibrium expression for the given chemical equation at equilibrium, in which water is omitted for it is liquid and just aqueous species are allowed to be included:
![Kb=\frac{[IBH^+][OH^-]}{[IB]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BIBH%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BIB%5D%7D)
Next, we calculate the concentration of hydroxide ions and the Kb due to the fact that both the pH and pKb were given:

![[OH^-]=10^{-5.8}=1.585x10^{-6}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-5.8%7D%3D1.585x10%5E%7B-6%7DM)

Then, since the concentration of these ions equal that of the conjugated acid of the ibuprofen (IBH⁺), we can plug in these and the Kb to obtain:
![6.31x10^{-6}=\frac{(1.585x10^{-6})(1.585x10^{-6})}{[IB]}](https://tex.z-dn.net/?f=6.31x10%5E%7B-6%7D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B%5BIB%5D%7D)
Finally, we solve for the equilibrium concentration of ibuprofen:
![[IB]=\frac{(1.585x10^{-6})(1.585x10^{-6})}{6.31x10^{-6}}=4.0x10^{-7}](https://tex.z-dn.net/?f=%5BIB%5D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B6.31x10%5E%7B-6%7D%7D%3D4.0x10%5E%7B-7%7D)
Learn more:
(Weak base equilibrium calculation) brainly.com/question/9426156


- <u>We </u><u>have </u><u>250g </u><u>of </u><u>liquid </u><u>water </u><u>and </u><u>it </u><u>needs </u><u>to </u><u>be </u><u>cool </u><u>at </u><u>temperature </u><u>from </u><u>1</u><u>0</u><u>0</u><u>°</u><u> </u><u>C </u><u>to </u><u>0</u><u>°</u><u> </u><u>C</u>
- <u>Specific </u><u>heat </u><u>of </u><u>water </u><u>is </u><u>4</u><u>.</u><u>1</u><u>8</u><u>0</u><u>J</u><u>/</u><u>g</u><u>°</u><u>C</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the</u><u> </u><u>total</u><u> </u><u>number </u><u>of </u><u>joules </u><u>released</u><u>. </u>

<u>We </u><u>know </u><u>that</u><u>, </u>
Amount of heat energy = mass * specific heat * change in temperature
<u>That </u><u>is, </u>

<u>Subsitute </u><u>the </u><u>required </u><u>values </u><u>in </u><u>the </u><u>above </u><u>formula </u><u>:</u><u>-</u>




Hence, 104,500 J of heat is released to cool 250 grams of liquid water from 100° C to 0° C.

<u>We </u><u>have </u><u>to </u><u>tell </u><u>whether </u><u>the </u><u>above </u><u>process </u><u>is </u><u>endothermic </u><u>or </u><u>exothermic </u><u>:</u><u>-</u>
Here, In the above process ΔT is negative and as a result of it Q is also negative that means above process is Exothermic
- <u>Exothermic </u><u>process </u><u>:</u><u>-</u><u> </u><u>It </u><u>is </u><u>the </u><u>process </u><u>in </u><u>which </u><u>heat </u><u>is </u><u>evolved </u><u>. </u>
- <u>Endothermic </u><u>process </u><u>:</u><u>-</u><u> </u><u>It </u><u>is </u><u>the </u><u>process </u><u>in </u><u>which </u><u>heat </u><u>is </u><u>absorbed </u><u>.</u>
The value of Kc for the thermal decomposition of H₂S is 2.2 x 10⁻⁴ at 1400 K:
2 H₂S(g) ↔ 2 H₂(g) + S₂(g)
initial 3.5 M 0 0
at equilibrium 3.5 M - 2x 2x x
Kc = [S₂][H₂]² / [H₂S]²
2.2 X 10⁻⁴ = x(2x)² / (3.5 - 2x)²
2.2 x 10⁻⁴ = 4 x³ / (3.5)² Assuming x <<<<< 3.5
x = 0.088
Thus [H₂S] = 3.324 M