The answer for the question above is A. the gravitational pull of the moon on the water near the coast. The sun and and the moon are responsible for the rising and falling of the ocean tides. The gravitational pull of the moon and the sun makes the water in the oceans bulge, causing a continuous change between high and low tide.
I think it might be Nitrogen dioxide, but please check behind
The molecular formula for compound is
mass of compound is 0.670 g.
To calculate number of atoms first calculate number of moles in the compound as follows:

Molar mass of
is 283.886 g/mol, thus,

Thus, number of mole of
is 0.00236 mol.
From the molecular formula 1 mole of
has 2 mol of P (phosphorus) and 5 mol of O (oxygen).
Thus, number of moles of P and O in 0.00236 mol of
will be:

Similarly,

Now, in 1 mol of an element there are
atoms.
Number of atoms of P will be:

Similarly, number of atoms of O will be:

Total number of atoms will be sum of number of atoms of P and O:

Therefore, total number of atoms in
will be
.
Answer:
C. 30 kJ
Explanation:
Hello there!
In this case, in agreement to the thermodynamic definition of the Gibbs free energy, in terms of enthalpy of entropy:

It is possible to calculate the required G by plugging in the given entropy and enthalpy as shown below:

Therefore, the answer is C. 30 kJ
.
Best regards!
Answer:
(c) The retention time would be higher (d) The retention time would be lower.
Explanation:
For the polar solutes which were separated using the hydrophilic interaction chromatography (HILIC) with a strongly polar bonded phase, the retention time would be higher if eluent were changed from 80 vol% to 90 vol% acetonitrile in water.
However, for the polar solutes which were separated using the normal-phase chromatography on bare silica with methyl t=butyl ether and 2-propanol solvent, the retention time would be lower if the eluent were changed from 40 vol% to 60 vol% 2-propanol.