Answer:
A 2.0 kg ball, A, is moving with a velocity of 5.00 m/s due west. It collides with a stationary ball, B, also with a mass of 2.0 kg. After the collision
Explanation:
Answer:
They are not concerned about their future health cause they are thinking they are probably healthy right now and they don’t realize that that can change in the future. If u are fit right now then that means u wont struggle with future physical fitness activities.
Explanation:
Answer:
x= 9.53 ounces
Explanation:
Given that
Mean ,μ= 9 ounces
Standard deviation ,σ=0.8 ounces
He wants to sell only those potatoes that are among the heaviest 25%.
P=25% = 0.25
When P= 0.25 then Z=0.674
Lest take x is the the minimum weight required to be brought to the farmer's market.
We know that
x = Z . σ + μ
x= 0.674 ₓ 0.8 + 9 ounces
x= 9.53 ounces
The statement “Electrons are pulled closer to the oxygen
atom” correctly describes the electrons in a water molecule. The
correct answer between all the choices given is the second choice or letter B. I
am hoping that this answer has satisfied your query and it will be able to help
you in your endeavor, and if you would like, feel free to ask another question.
Answer:
μ = 0.37
Explanation:
For this exercise we must use the translational and rotational equilibrium equations.
We set our reference system at the highest point of the ladder where it touches the vertical wall. We assume that counterclockwise rotation is positive
let's write the rotational equilibrium
W₁ x/2 + W₂ x₂ - fr y = 0
where W₁ is the weight of the mass ladder m₁ = 30kg, W₂ is the weight of the man 700 N, let's use trigonometry to find the distances
cos 60 = x / L
where L is the length of the ladder
x = L cos 60
sin 60 = y / L
y = L sin60
the horizontal distance of man is
cos 60 = x2 / 7.0
x2 = 7 cos 60
we substitute
m₁ g L cos 60/2 + W₂ 7 cos 60 - fr L sin60 = 0
fr = (m1 g L cos 60/2 + W2 7 cos 60) / L sin 60
let's calculate
fr = (30 9.8 10 cos 60 2 + 700 7 cos 60) / (10 sin 60)
fr = (735 + 2450) / 8.66
fr = 367.78 N
the friction force has the expression
fr = μ N
write the translational equilibrium equation
N - W₁ -W₂ = 0
N = m₁ g + W₂
N = 30 9.8 + 700
N = 994 N
we clear the friction force from the eucacion
μ = fr / N
μ = 367.78 / 994
μ = 0.37