Answer:
Tension in the string is equal to 58.33 N ( this will be the strength of the string )
Explanation:
We have given mass m = 1.7 kg
radius of the circle r = 0.48 m
Kinetic energy is given 14 J
Kinetic energy is equal to 
So 

v = 4.05 m/sec
Centripetal force is equal to 
So tension in the string will be equal to 58.33 N ( this will be the strength of the string )
Answer:
scientists will use absolute dating to find how old a fossil exactly is.
*FRICTIONAL FORCE* in the opposite direction of the way Bobby is pushing.
Friction is a force which varies but it is always opposing the direction of motion.
*APPLIED FORCE* is the force that Bobby is pushing with.
An applied force is literally the force that is applied to an object.
*WEIGHT FORCE* is also called the force of gravity. It is straight downward.
It is the weight of the object multiplied by the force of gravity. If the TV weighed 100kg, acceleration is always 9.81 m/s^2, so the weight force would be 981 N.
*NORMAL FORCE* is the force which is holding the TV above ground. The ground supplies a force upward against the TV.
Normal force is just the force that prevents the TV from falling through the ground. We don't normally realize it in our everyday life, but the floor must hold everything up because gravity is always "pushing" against it.
The answer to ur question is: B
Answer:
1832
Explanation:
From;
Δp Δx = h/4π
Δp = uncertainty in momentum
Δx = uncertainty in position
h= Plank's constant
But p =mv hence, Δp= Δmv
m= mass, v= velocity
mass of electron = 9.11 * 10^-31 Kg
Mass of proton = 1.67 * 10^-27 Kg
since m is a constant,
Δv = h/Δxm4π
For proton;
Δv = 6.6 * 10^-34/4 * 3.14 * 1.67 * 10^-27 * 1 * 10^-10
Δv = 315 ms-1
For electron;
Δv = 6.6 * 10^-34/4 * 3.14 * 9.11 * 10^-31 * 1 * 10^-10
Δv = 577000 ms-1
Ratio of uncertainty of electron to that of proton = 577000 ms-1/315 ms-1= 1832