1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cestrela7 [59]
3 years ago
9

Why would an counductor heat up soup?

Physics
1 answer:
PilotLPTM [1.2K]3 years ago
6 0

example of a great insulator is a thermos. If you put soup in a thermos, you can open it later and enjoy warm soup on a cold winter day. The thermos insulates the soup, trapping the heat inside. Likewise, if you are playing soccer on a hot August afternoon, your thermos full of ice water stays refreshing and cold.

You might be interested in
A transformer consisting of two coils wrapped around an iron core is connected to a generator and a resistor (Resistor is connec
V125BC [204]

Answer:

The peak emf of the generator is 40.94 V.

Explanation:

Given that,

Number of turns in primary coil= 11

Number of turns in secondary coil= 18

Peak voltage = 67 V

We nee to calculate the peak emf

Using relation of number of turns and emf

\dfrac{N_{1}}{N_{2}}=\dfrac{E_{1}}{E_{2}}

E_{1}=\dfrac{N_{1}}{N_{2}}\times E_{2}

Where, N₁ = Number of turns in primary coil

N₂ = Number of turns in secondary coil

E₂ = emf across secondary coil

Put the value into the formula

E_{1}=\dfrac{11}{18}\times67

E_{1}=40.94\ V

Hence, The peak emf of the generator is 40.94 V.

4 0
3 years ago
Un proyectil es lanzado horizontalmente desde una altura de 12 metro con una velocidad de 80 m/sg. a.Calcular el tiempo de vuelo
Naily [24]

Answer:

t= 1,56 s ,   x= 124,8 m , v = (80 i^ - 15,288 j ) m/s

Explanation:

Este es un ejercicio de lanzamiento proyectiles, comencemos por encontrar el tiempo que tarda en llegar al piso

        y = y₀ + v_{oy} t – ½ g t²

en este caso la altura inicial es y₀= 12 m y llega a y=0 , como es lanzado horizontalmente la velocidad vertical es cero (v_{oy}=0)

       0 = y₀ – ½ g t²

       t= √ (2 y₀/g)

calculemos

       t= √ ( 2 12 / 9,8)

       t= 1,56 s

El alcance del proyectil es la distancia horizontal recorrida  

        x = v₀ₓ t

        x = 80 1,56

        x= 124,8 m

La velocidad de impacto cuando toca el suelo

        vx = v₀ₓ = 80 ms

        v_{y} = v_{oy} – gt

        v_{y} = - 9,8 1,56

        v_{y} = - 15,288 m/s

la velocidad es

       v = (80 i^ - 15,288 j ) m/s

Traducttion  

This is a projectile launching exercise, let's start by finding the time it takes to reach the ground

        y = y₀ + v_{oy} t - ½ g t²

in this case the initial height is i = 12 m and it reaches y = 0, as it is thrown horizontally the vertical speed is zero (v_{oy} = 0)

       0 =y₀I - ½ g t²

       t = √ (2y₀ / g)

let's calculate

       t = √ (2 12 / 9.8)

       t = 1.56 s

Projectile range is the horizontal distance traveled

        x = v₀ₓ t

        x = 80 1.56

        x = 124.8 m

Impact speed when it hits the ground

        vₓ = v₀ₓ = 80 ms

        v_{y} = v_{oy} - gt

        v_{y} = - 9.8 1.56

        v_{y} = - 15,288 m / s

the speed is

       v = (80 i ^ - 15,288 j) m / s

7 0
3 years ago
When light is reflected by a mirror, the angle of incidence is always A. equal to the angle of reflection. B. less than the angl
ankoles [38]
When light is reflected by a mirror, the angle of incidence is always <span>A. equal to the angle of reflection. We know this by the Law of Reflection.</span>
6 0
3 years ago
Read 2 more answers
A bicyclist in the Tour de France crests a mountain pass as he moves at 18 km/h. At the bottom, 4.0 km farther, his speed is at
Allisa [31]

We are given:

v0 = initial velocity = 18 km/h

d = distance = 4 km

v = final velocity = 75 km/h

a =?

<span>
We can solve this problem by using the formula:</span>

v^2 = v0^2 + 2 a d

 

75^2 = 18^2 + 2 (a) * 4

5625 = 324 + 8a

<span>a = 662.625 km/h^2</span>

6 0
3 years ago
A cutting tool several forces acting on it. One force is F=-axy^2 j , a force in the negative y-direction whose magnitude depend
liq [111]
The force on the tool is entirely in the negative-y direction.
So no work is done during any moves in the x-direction.

The work will be completely defined by

                     (Force) x (distance in the y-direction),

and it won't matter what route the tool follows to get anywhere. 
Only the initial and final y-coordinates matter.

We know that    F = - 2.85 y².  (I have no idea what that ' j ' is doing there.)
Remember that 'F' is pointing down.

From  y=0  to  y=2.40  is a distance of  2.40  upward.

Sadly, since the force is not linear over the distance, I don't think
we can use the usual formula for  Work = (force) x (distance).
I think instead we'll need to integrate the force over the distance,
and I can't wait to see whether I still know how to do that.

        Work  =  integral of (F·dy) evaluated from  0  to  2.40

                  =  integral of (-2.85 y² dy) evaluated from  0  to  2.40

                 =  (-2.85) · integral of  (y² dy)  evaluated from  0  to  2.40 .


Now, integral of (y² dy)  =  1/3  y³ .

Evaluated from  0  to  2.40 , it's  (1/3 · 2.40³) - (1/3 · 0³)

                                            =  1/3 · 13.824  =  4.608 .

And the work  =  (-2.85) · the integral

                     =  (-2.85) · (4.608)

                     =      - 13.133  .

-- There are no units in the question (except for that mysterious ' j ' after the 'F',
which totally doesn't make any sense at all).
If the ' F ' is newtons and the 2.40 is meters, then the  -13.133 is joules.

-- The work done by the force is negative, because the force points
DOWN but we lifted the tool UP to 2.40.  Somebody had to provide
13.133 of positive work to lift the tool up against the force, and the force
itself did 13.133 of negative work to 'allow' the tool to move up. 

-- It doesn't matter whether the tool goes there along the line  x=y , or
by some other route.  WHATEVER the route is, the work done by ' F ' 
is going to total up to be  -13.133 joules at the end of the day.

As I hinted earlier, the last time I actually studied integration was in 1972,
and I haven't really used it too much since then.  But that's my answer
and I'm stickin to it.  If I'm wrong, then I'm wrong, and I hope somebody
will show me where I'm wrong.
3 0
3 years ago
Other questions:
  • What is the acceleration of a ball traveling horizontally with an initial velocity of 20 meters/second and, 2.0 seconds later, a
    10·2 answers
  • What are 13 types of electric charge?
    15·1 answer
  • 5. A massless string passes over a frictionless pulley and carries
    11·1 answer
  • Formula One race cars are capable of remarkable accelerations when speeding up, slowing down, and turning corners. At one track,
    10·1 answer
  • You attach a 3.10 kg weight to a horizontal spring that is fixed at one end. You pull the weight until the spring is stretched b
    6·1 answer
  • From January 26, 1977, to September 18, 1983, George Meegan of Great Britain walked from Ushuaia, at the southern tip of South A
    8·1 answer
  • Question is in the picture :,)
    5·1 answer
  • How do you find the angle (to the nearest tenth) on your graph that produced the greatest range, based on the line of best fit?
    12·1 answer
  • A satellite was in two separate crashes. In both crashes, the satellite had the same mass. Engineers want to know about the spee
    10·1 answer
  • A ball is dropped from the top of an 80 m high building. How long will it take
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!