1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mylen [45]
3 years ago
7

The velocity of a 1.3 kg remote-controlled car is plotted on the graph. The work of segment A is J.

Physics
2 answers:
tamaranim1 [39]3 years ago
5 0

Answer: 585 J

Explanation:

We can calculate the work done during segment A by using the work-energy theorem, which states that the work done is equal to the gain in kinetic energy of the object:

W=K_f -K_i

where Kf is the final kinetic energy and Ki the initial kinetic energy. The initial kinetic energy is zero (because the initial velocity is 0), while the final kinetic energy is

K_f =\frac{1}{2}mv^2

The mass is m=1.3 kg, while the final velocity is v=30 m/s, so the work done is:

W=K_f = \frac{1}{2}(1.3 kg)(30 m/s)^2=585 J

3241004551 [841]3 years ago
5 0
585 J

This is how to get this anwer:
1/2 * 1.3 * (30^2) = 
0.65 * 900 = 585 K=J

You might be interested in
A cow wanders 30 m North, turns 22 degrees right of its original path, and wanders another 40 m. Find its total displacement.
scoundrel [369]

Answer:OB=58.3m

Explanation:

So here cow wanders 30m in north and turns 22 degrees in right side and moves 40m more, as shown in figure given.

now take the starting point as a origin such that cow moves in x-y co-ordinate axis.

As shown in figure length OA is the length when cow moves in north or y direction. Later she takes 22 degrees turn to right and moves 40m more.

So the final displacement is the length of cow from the origin that is length OB.

now co-ordinates of B are [40cos22°,40sin22°+30] i.e [37.084,44.984]

now displacement of cow= length of OB

                                           = \sqrt{[37.084]^{2}+[44.984]^{2}  }

                                           =\sqrt{3398.78}

                                     OB =58.3

                                         

7 0
10 months ago
An astronaut inside a spacecraft, which protects her from harmful radiation, is orbiting a black hole at a distance of 120 km fr
mestny [16]

An astronaut inside a spacecraft, which protects her from harmful radiation, is orbiting a black hole at a distance of 120 km from its center. The black hole is 5.00 times the mass of the sun and has a Schwarzschild radius of 15.0 km. The astronaut is positioned inside the spaceship such that one of her 0.030 kg ears is 6.0 cm farther from the black hole than the center of mass of the spacecraft and the other ear is 6.0 cm closer.

What is the tension between her ears?

Would the astronaut find it difficult to keep from being torn apart by the gravitational forces?

Answer:

The tension between the ears = 2.07 KN

The astronaut will find it difficult to keep and will eventually be in trouble because the tension is now greater compared to the tension in the human tissues.

Explanation:

Given that:

Orbital radius of the spacecraft (R) = 120 Km = 120 × 10³ m

Mass of the black hole (m) = 5 \ * (M \ _{sun})

where : M_{sun} = 1.99*10^{33} \ kg

Then; we have:

 m = 5*(1.99*10^{30} \ kg ) \\ = 9.95*10^{30} kg

Schwarzchild radius of the black hole

r - 15.0 km

Mass of each ear m_{ear} = 0.030 \ kg

Farther distance between one ear and the black hole (d) = 6.0 cm

= 0.06 m

Closer distance between the other ear and the black home is (d) 6.0 cm

= 0.6 cm

NOW, If we assume that the tension force should be T; then definitely the two ears will posses the same angular velocity .

The net force on the ear closer to the black hole will be:

\frac{GMm_{ear} }{(R-d)}- T = m_{ear} (R -  d) \omega^2

\frac{GMm_{ear} }{(R-d)^2}- \frac{T}{(R-d)} = m_{ear} \omega^2 \ ----> \ (1)

The net force on the ear farther to the black hole is :

\frac{GMm_{ear} }{(R+d)}- T = m_{ear} (R +  d) \omega^2

\frac{GMm_{ear} }{(R+d)^2}- \frac{T}{(R+d)} = m_{ear} \omega^2 \ ----> \ (2)

Equating equation (1) and (2) & therefore making (T) the subject of the formula; we have:

T = \frac{3GMm_{ear}d}{R^3}

T = \frac{3(6.67*10^{-11}N.m^2/kg^2)(1.95*10^{30}kg)(0.03kg)(0.06m)}{(120*10^3m)^3}

T = 2073.9 N\\T = 2.07 KN

The tension between the ears = 2.07 KN

The astronaut will find it difficult to keep and will eventually be in trouble because the tension is now greater compared to the tension in the human tissues.

3 0
3 years ago
What type of acceleration does an object moving with constant speed in a circular path experience?Select one:A) constant acceler
olga_2 [115]

ANSWER:

D) centripetal acceleration.

STEP-BY-STEP EXPLANATION:

When a body performs a uniform circular motion, the direction of the velocity vector changes at every instant. This variation is experienced by the linear vector, due to a force called centripetal, directed towards the center of the circumference that gives rise to the centripetal acceleration.

Therefore, the answer is centripetal acceleration.

3 0
1 year ago
To decrease the angle between the anterior surface of the foot and anterior surface of the lower leg is described as:
Westkost [7]

Answer:

dorsiflexion

Explanation:

To decrease the angle between the anterior surface of the foot and anterior surface of the lower leg is described as: dorsiflexion

7 0
3 years ago
Read 2 more answers
10. Which of these devices is also referred to as a'key'?
brilliants [131]

Answer:

Electric switch is commonly known as the key of an electric circuit.

3 0
2 years ago
Read 2 more answers
Other questions:
  • The life cycle of stars may be boiled down into a tug of war, lasting billions of years, between two basic forces. In your own w
    10·1 answer
  • What is the velocity of 360?
    14·1 answer
  • A. Calculate the diffraction limit of the human eye, assuming a wide-open pupil so that your eye acts like a lens with diameter
    7·2 answers
  • Which numbers on the ph scale indicate an acid
    8·1 answer
  • Pls help pls pls pls pls
    9·1 answer
  • (96 Points )A bus and a bicycle have a head-on collision. Compare the force of impact between the bus and the bicycle; compare t
    12·1 answer
  • A lady walks 10 m to the north, then she turns and continues walking 30 m due east.
    6·1 answer
  • A body travel from rest and acceleration to a speed of 120kg/hours in 10 seconds . calculate acceleration​
    8·1 answer
  • It takes 0.5 s to complete a 3 m wave. What is the speed of the wave?
    6·1 answer
  • a man can swim in still water with speed of 2kmhr-1 wants to cross a river 200m wide flowing with 1kmhr-1 . Calculate the time t
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!