Distance traveled by the ball is given by
here we know that
speed = 20 m/s
times = 0.25 s
now we have
so ball will travel 5 m distance in the given interval of time
Answer: The height above the release point is 2.96 meters.
Explanation:
The acceleration of the ball is the gravitational acceleration in the y axis.
A = (0, -9.8m/s^)
For the velocity we can integrate over time and get:
V(t) = (9.20m/s*cos(69°), -9.8m/s^2*t + 9.20m/s^2*sin(69°))
for the position we can integrate it again over time, but this time we do not have any integration constant because the initial position of the ball will be (0,0)
P(t) = (9.20*cos(69°)*t, -4.9m/s^2*t^2 + 9.20m/s^2*sin(69°)*t)
now, the time at wich the horizontal displacement is 4.22 m will be:
4.22m = 9.20*cos(69°)*t
t = (4.22/ 9.20*cos(69°)) = 1.28s
Now we evaluate the y-position in this time:
h = -4.9m/s^2*(1.28s)^2 + 9.20m/s^2*sin(69°)*1.28s = 2.96m
The height above the release point is 2.96 meters.
Answer:
Inertia is the property of mass that resists change. Therefore, it is safe to say that as the mass of an object increases so does its inertia.
Explanation:
<span>1078 kgm / s would be the answer I hope this helps!!!</span>
Answer:
The pendulum of the clock.
Explanation:
Hi there!
The kinetic energy is the energy associated with the velocity of the object. The potential energy is the energy associated with the position of the object. In the objects listed in the question, only one object is moving: the pendulum of the clock (assuming that the clock is functioning). If the clock functions, the pendulum is moving when it is at the lowest point of its arc of motion and with maximum velocity. All potential energy that the pendulum stored when it reached the highest height, is transformed into kinetic energy at the lowest point. Thus, at that point, the object has more kinetic energy than potential energy.