Answer:
-58.876 kJ
Explanation:
m = mass of air = 1 kg
T₁ = Initial temperature = 15°C
T₂ = Final temperature = 97°C
Cp = Specific heat at constant pressure = 1.005 kJ/kgk
Cv = Specific heat at constant volume = 0.718 kJ/kgk
W = Work done
Q = Heat = 0 (since it is not mentioned we are considering adiabatic condition)
ΔU = Change in internal energy
Q = W+ΔU
⇒Q = W+mCvΔT
⇒0 = W+mCvΔT
⇒W = -mCvΔT
⇒Q = -1×0.718×(97-15)
⇒Q = -58.716 kJ
Answer:
His third law states that for every action (force) in nature there is an equal and opposite reaction. In other words, if object A exerts a force on object B, then object B also exerts an equal and opposite force on object A.
Answer : The temperature when the water and pan reach thermal equilibrium short time later is, 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of aluminium = 
= specific heat of water = 
= mass of aluminum = 0.500 kg = 500 g
= mass of water = 0.250 kg = 250 g
= final temperature of mixture = ?
= initial temperature of aluminum = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the temperature when the water and pan reach thermal equilibrium short time later is, 
<h3><u>Answer;</u></h3>
Satellite
Differences in ocean-surface height can be measured by<u> Satellite</u>
<h3><u>Explanation;</u></h3>
- The topography of the ocean or the height of the ocean surface relative to a level of no motion provides the information on tides, and the distribution of heat and mass in the Earths's oceans.
- <em><u>The ocean topography is measured using satellites altimeter. Satellites use radar altimeters that are specially made to measure the height of the ocean surface. The satellites measure the height of the ocean surface with an accuracy of 3 cm relative to the center of the earth.</u></em>
- Satellite altimeter combines precise orbit determination with accurate ranging by a microwave altimeter of ocean distance to the satellite.
The answer for the following problem is mentioned below.
The option for the question is "A" approximately.
- <u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>
Explanation:
Given:
Spring constant (k) = 240 N/m
amount of the compression (x) = 0.40 m
To calculate:
Elastic potential energy (E)
We know;
<em>According to the formula;</em>
E =
× k × x × x
<u>E = </u>
<u> × k ×(x)²</u>
where;
E represents the elastic potential energy
K represents the spring constant
x represents amount of the compression in the string
So therefore,
Substituting the values in the above formula;
E =
× 240 × (0.40)²
E =
× 240 × 0.16
E =
× 38.4
E = 19.2 J or approximately 20 J
<u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>