From the answers provided, I believe the possible answer would be the last option, silicon, oxygen, and one or more metals. Here's my reasoning: the most abundant mineral group found in the Earth's crust is the silicate group. The silicate materials contain both oxygen and silicon. Silicates are the most common minerals in the rock-formation process, and it has, in fact, been estimated that they make up 75 to 90 percent of the Earth's crust. From this piece of evidence, I can guess that the answer will possibly be D, silicon, oxygen, and one or more metals.
It should also be noted that the additional elements that combine with the silicon-oxygen tetrahedron are involved with the other elements commonly found in the Earth's crust and mantle. They are aluminum, calcium, iron, magnesium, potassium and sodium.
I changed my undershorts. The elastic on the old ones I put on that day was deteriorated, and it completely failed when I dripped lab coffee on it, causing falldown.
Hello,
<u>Solution for A:</u>
Force = 3.00N
Mass = 0.50 Kgs
Time = 1.50 Seconds
According to newton's second law of motion;
Force = Mass times Acceleration(a)
3.00 = 0.50 * a
a = 3.00/0.50 = 6.00 m/s^2
We know that acceleration = Velocity / time
So Velocity = time * acceleration = 1.50 * 6 = 9.00 m/s^2
<u>Solution for B:</u>
The net force = 4.00N - 3.00N = 1.00N to the left
Force = 1.00N
Mass = 0.50Kg
Time = 3.00 Seconds
Again; F = MA (Where F is force, M is mass and A is acceleration)
1.00N = 0.5 * A
A = 1/0.5 = 2 m/s^2
Velocity = Acceleration * Time = 2 * 3 = 6 m/s
the answer might be 2.3 kilos