The correct answer is option B. The most dense phase of matter is the solid phase and the least dense are gases. However, there is an exception. Water is the exception. Solid water or ice is less dense than the liquid phase therefore it floats on liquid water.
The cooling of a mint is just a sensation if you were to put mints into warm water the water would remain warm because it is just a cooling sensation. I hope this helps:)
Benefits; helps our red blood cells transport oxygen all around our body
Answer:
a. 7.8*10¹⁴ He⁺⁺ nuclei/s
b. 4000s
c. 7.7*10⁸s
Explanation:
I = 0.250mA = 2.5 * 10⁻³A
Q = 1.0C
1 e- contains 1.60 * 10⁻¹⁹C
But He⁺⁺ Carrie's 2 charge = 2 * 1.60*10⁻¹⁹C = 3.20*10⁻¹⁹C
(A).
No. Of charge per second = current passing through / charge
1 He⁺⁺ = 2.50 * 10⁻⁴ / 3.2*10⁻¹⁹C
1 He⁺⁺ = 7.8 * 10¹⁴ He⁺⁺ nuclei
(B).
I = Q / t
From this equation, we can determine the time it takes to transfer 1.0C
I = 1.0 / 2.5*10⁻⁴ = 4000s
(C).
Time it takes for 1 mol of He⁺⁺ to strike the target =?
Using Avogadro's ratio,
1.0 mole of He = (6.02 * 10²³ ions/mol ) * (1 / 7.81*10¹⁴ He ions)
Note : ions cancel out leaving the value of the answer in mols.
1.0 mol of He = 7.7 * 10⁸s