Answer:
The allowable values for the principle quantum number (n) are integers greater than zero.
The allowable values for the angular momentum quantum number (l) are integers from 0 to n-1.
The allowable values for the magnetic quantum number (ml) are integers from -l to l.
The allowable values for the spin quantum number (ms) are -1/2 and 1/2.
Explanation:
<em>Identify allowable combinations of quantum numbers for an electron. Select all that apply.</em>
- <em>The allowable values for the principle quantum number (n) are integers greater than zero. </em>TRUE. The principal quantum number (n) represents the level of energy in which an electron is and can take positive integer values.
- <em>The allowable values for the angular momentum quantum number (l) are integers from 0 to n-1.</em> TRUE. The angular quantum number (l) represents the sublevel of energy and the kind of orbital an electron is in and can take integer values from 0 to n-1. For instance, if n = 1, l can take the value "0", which represents the sublevel and orbital "s".
- <em>The allowable values for the magnetic quantum number (ml) are integers from -l to l.</em> TRUE. The magnetic quantum number (ml) represents the orientation of an orbital in space and can take integers values from -l to +l. For instance, if l = 1 (p orbital), ml can take the values -1, 0 and 1, which refer to orbitals px, py and pz.
- <em>The allowable values for the spin quantum number (ms) are -1/2 and 1/2. </em>TRUE. The spin quantum number (ms) represents the spin of the electron and can take values -1/2 and +1/2.
Physical changes occur when objects or substances undergo a change that does not change their chemical composition. This contrasts with the concept of chemical change in which the composition of a substance changes or one or more substances combine or break up to form new substances.
Answer:
mass of X extracted from the aqueous solution by 50 cm³ of ethoxy ethane = 3.33 g
Explanation:
The partition coefficient of X between ethoxy ethane (ether) and water, K is given by the formula
K = concentration of X in ether/concentration of X in water
Partition coefficient, K(X) between ethoxy ethane and water = 40
Concentration of X in ether = mass(g)/volume(dm³)
Mass of X in ether = m g
Volume of ether = 50/1000 dm³ = 0.05 dm³
Concentration of X in ether = (m/0.05) g/dm³
Concentration of X in water = mass(g)/volume(dm³)
Mass of X in water left after extraction with ether = (5 - m) g
Volume of water = 1 dm³
Concentration of X in water = (5 - m/1) g/dm³
Using K = concentration of X in ether/concentration of X in water;
40 = (m/0.05)/(5 - m)
(m/0.05) = 40 × (5 - m)
(m/0.05) = 200 - 40m
m = 0.05 × (200 - 40m)
m = 10 - 2m
3m = 10
m = 10/3
m = 3.33 g of X
Therefore, mass of X extracted from the aqueous solution by 50 cm³ of ethoxy ethane = 3.33 g