Answer:
A liquid-fueled rocket has two liquids (liquids are good because of the density, they need less space than a gas to be stored), such that these liquids are called the fuel and the oxidizer.
These liquids are injected into a system that leads to a combustion chamber, where the liquids are mixed (we need to mix the fuel with the oxidizer to enable the combustion of the fuel) and burned to produce thrust.
Some common examples of oxidizers are liquid oxygen, which may be combined with fuels like liquid hydrogen, liquid methane, kerosene and hydrazine.
Other oxidizers are liquid fluorine (which also can be combined with the fuels liquid hydrogen and hydrazine), nitrogen tetroxide (which can be combined whit kerosene, hydrazine and other fuels) and FLOX-70, which can only be combined with kerosene.
The "most commonly used" may depend on the country and the type of liquid propellant ( petroleum, cryogens, and hypergols)
Such that the most common oxidizer may be liquid oxygen, and the most common fuel the kerosene.
The reaction, Fe2O3 + 3CO------> 2Fe + 3CO2 is an oxidation-reduction reaction.
An oxidation-reduction reaction is a reaction in which there is a change in oxidation number from left to right in the reaction. This is because, a specie is oxidized and another specie is reduced.
In the reaction; Fe2O3 + 3CO------> 2Fe + 3CO2, we can see that the oxidation number of iron decreased from +3 on the left hand side to zero on the right hand side. The oxidation number of carbon was increased from + 2 to +4.
Learn more: brainly.com/question/10079361
Answer:A
Explanation:becuse they waste less heat energy
Answer:
Explanation:
Hello,
In this case, the undergoing chemical reaction is:
In such a way, the mercury II sulfate (molar mass 296.65g/mol) is in a 1:1 molar ratio with the mercury II chloride (molar mass 271.52g/mol), for that reason the stoichiometry to find mass in grams of mercury II chloride turns out:
Best regards.