The fridge part can, just not the freezer, I think.
Two solutions are made by mixing sugar and enough water to make a 1 liter solution. 10% sugar has more solvent.
In chemistry, a solution is a homogeneous mixture of two or more compounds in their relative proportions that can be continually altered up to what is referred to as the limit of solubility. Although the word "solution" is frequently used to refer to the liquid state of matter, solutions of gases and solids are also possible. A solute is dissolved by a solvent (s), which is a substance (from the Latin solv, "loosen, untie, solve,") to produce a solution. The most common form of a solvent is a liquid, although other forms include solids, gases, and supercritical fluids. Depending on the temperature, a different amount of solute can dissolve in a given volume of solvent. Solvents are extensively utilized in paints, paint removers, inks, and dry cleaning.
Learn more about solution here :
brainly.com/question/7932885
#SPJ4
OH- is common to bases.
Explanation:
The base is a is an ionic compounds which when placed in aqueous solution dissociates in to a cation and an anion OH-.
The presence of OH- in the solution shows that the solution is basic or alkaline.
From Bronsted and Lowry concept base is a molecule that accepts a proton for example in NaOH, Na is a proton donor and OH is the proton acceptor.
A base accepts hydrogen ion and the concentration of OH is always higher in base.
There is a presence of conjugate acid and conjugate base in the Bronsted and Lowry acid and base.
Conjugate acid is one which is formed when a base gained a proton.
Conjugate base is one which is formed when an acid looses a proton.
And from the Arrhenius base Theory, the base is one that dissociates in to water as OH-.
Answer:
6.88 mg
Explanation:
Step 1: Calculate the mass of ³²P in 175 mg of Na₃³²PO₄
The mass ratio of Na₃³²PO₄ to ³²P is 148.91:31.97.
175 mg g Na₃³²PO₄ × 31.97 g ³²P/148.91 g Na₃³²PO₄ = 37.6 mg ³²P
Step 2: Calculate the rate constant for the decay of ³²P
The half-life (t1/2) is 14.3 days. We can calculate k using the following expression.
k = ln2/ t1/2 = ln2 / 14.3 d = 0.0485 d⁻¹
Step 3: Calculate the amount of P, given the initial amount (P₀) is 37.6 mg and the time elapsed (t) is 35.0 days
For first-order kinetics, we will use the following expression.
ln P = ln P₀ - k × t
ln P = ln 37.6 mg - 0.0485 d⁻¹ × 35.0 d
P = 6.88 mg