1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jek_recluse [69]
3 years ago
15

In 1610, galileo used his telescope to discover four prominent moons around jupiter. their mean orbital radii a and periods t ar

e as follows: (a) io has a mean orbital radius of 4.22 x 108 m and a period of 1.77 days. find the mass of jupiter from this information. (b) europa has a mean orbital radius of 6.71 x 108 m and a period of 3.55 days. find the mass of jupiter from this information. (c) ganymede has a mean orbital radius of 10.7 x 108 m and a period of 7.16 days. find the mass of jupiter from this information. (d) callisto has a mean orbital radius of 18.8 x 108 m and a period of 16.7 days. find the mass of jupiter from this information
Physics
1 answer:
katrin2010 [14]3 years ago
6 0

Time period of any moon of Jupiter is given by

T = 2\pi \sqrt{\frac{r^3}{GM}}

from above formula we can say that mass of Jupiter is given by

M = \frac{4 \pi^2 r^3}{GT^2}

now for part a)

r = 4.22 * 10^8 m

T = 1.77 day = 152928 seconds

now by above formula

M = \frac{4 \pi^2 r^3}{GT^2}

M = \frac{4 \pi^2 (4.22 * 10^8)^3}{(6.67 * 10^{-11})(152928)^2}

M = 1.9* 10^{27} kg

Part B)

r = 6.71 * 10^8 m

T = 3.55 day = 306720 seconds

now by above formula

M = \frac{4 \pi^2 r^3}{GT^2}

M = \frac{4 \pi^2 (6.71 * 10^8)^3}{(6.67 * 10^{-11})(306720)^2}

M = 1.9* 10^{27} kg

Part c)

r = 10.7 * 10^8 m

T = 7.16 day = 618624 seconds

now by above formula

M = \frac{4 \pi^2 r^3}{GT^2}

M = \frac{4 \pi^2 (10.7 * 10^8)^3}{(6.67 * 10^{-11})(618624)^2}

M = 1.89* 10^{27} kg

PART D)

r = 18.8 * 10^8 m

T = 16.7 day = 1442880 seconds

now by above formula

M = \frac{4 \pi^2 r^3}{GT^2}

M = \frac{4 \pi^2 (18.8 * 10^8)^3}{(6.67 * 10^{-11})(1442880)^2}

M = 1.889* 10^{27} kg

You might be interested in
If the force applied to an object is not greater than the starting friction, what will happen to the object?
bonufazy [111]

Answer:

Explanation:

the object will not move as the force exerted is not sufficient enough to overcome its force of friction

3 0
3 years ago
Read 2 more answers
A huge rotating cloud of particles in space gravitate together to form an increasingly dense ball. As ir shrinks in size, the cl
Trava [24]

Answer:

rotates faster

Explanation:

A huge rotating cloud of particles in space gravitate together to form an increasingly dense ball As it shrinks in size, the cloud rotates faster. Because Angular momentum is conserved, so when it shrinks the moment of inertia decreases, then angular speed must increase. So it rotates fast.

4 0
3 years ago
A bicycle rider pushes a 13kg bicycle up a steep hill. the incline is 24 degree and the road is 275m long. the rider pushes the
Digiron [165]

Answer:

A. W = 6875.0 J.

B. W = -14264.6 J.

Explanation:

A. The work done by the rider can be calculated by using the following equation:

W_{r} = |F_{r}|*|d|*cos(\theta_{1})

Where:                

F_{r}: is the force done by the rider = 25 N

d: is the distance = 275 m

θ: is the angle between the applied force and the distance

Since the applied force is in the same direction of the motion, the angle is zero.

W_{r} = |F_{r}|*|d|*cos(0) = 25 N*275 m = 6875.0 J

Hence, the rider does a work of 6875.0 J on the bike.

B. The work done by the force of gravity on the bike is the following:

W_{g} = |F_{g}|*|d|*cos(\theta_{2})  

The force of gravity is given by the weight of the bike.

F_{g} = -mgsin(24)     

And the angle between the force of gravity and the direction of motion is 180°.

W_{g} = |mgsin(24)|*|d|*cos(\theta_{2})  

W_{g} = 13 kg*9.81 m/s^{2}*sin(24)*275 m*cos(180) = -14264.6 J  

The minus sign is because the force of gravity is in the opposite direction to the motion direction.

Therefore, the magnitude of the work done by the force of gravity on the bike is 14264.6 J.  

I hope it helps you!                                                                                          

3 0
3 years ago
When a high-power laser is used in the Earth's atmosphere, the electric field associated with the laser beam can ionize the air,
Marianna [84]

Find the below attachment

4 0
3 years ago
Venn diagrams are used for comparing and contrasting
Wewaii [24]

Explanation:

"Carry energy" and "Follow a patter

this is right one

3 0
4 years ago
Read 2 more answers
Other questions:
  • ANSWER ASAP. TIMED! FILL IN THE BLANK PLZZZ
    12·1 answer
  • The process of achieving fitness in the human body is almost instant and can occur overnight. True or False
    5·1 answer
  • Explain two reason why Si is easier to use than the English system
    6·1 answer
  • A 1700kg rhino charges at a speed of 50.0km/h. what average force is needed to bring the rhino to a stop in 0.50s?
    8·1 answer
  • In this experiment, the
    13·1 answer
  • What would happen when there is a collision between two objects having unequal masses
    10·1 answer
  • The battleship and enemy ships 1 and 2 lie along a straight line. Neglect air friction. battleship 1 2 Consider the motion of th
    9·1 answer
  • object x and y fall from a same height and object x is heavier than y which object would fall faster qnd y​
    6·1 answer
  • (b) During one day, 250 kg of water is pumped through
    12·1 answer
  • How to keep my family safe during a hurricane?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!