D. chemical to electrical to sound and electromagnetic
Answer:
Diorite, Gabbro, and Granite
Explanation:
Answer:
(a) 43.2 kC
(b) 0.012V kWh
(c) 0.108V cents
Explanation:
<u>Given:</u>
- i = current flow = 3 A
- t = time interval for which the current flow =

- V = terminal voltage of the battery
- R = rate of energy = 9 cents/kWh
<u>Assume:</u>
- Q = charge transported as a result of charging
- E = energy expended
- C = cost of charging
Part (a):
We know that the charge flow rate is the electric current flow through a wire.

Hence, 43.2 kC of charge is transported as a result of charging.
Part (b):
We know the electrical energy dissipated due to current flow across a voltage drop for a time interval is given by:

Hence, 0.012V kWh is expended in charging the battery.
Part (c):
We know that the energy cost is equal to the product of energy expended and the rate of energy.

Hence, 0.108V cents is the charging cost of the battery.
Answer:
21.85 C
Explanation:
mass of iron = 1.5 kg, initial temperature of iron, T1 = 500 C
mass of water = 20 kg, initial temperature of water, T2 = 18 C
let T be the equilibrium temperature.
Specific heat of iron = 449 J/kg C
specific heat of water = 4186 J/kg C
Use the principle of caloriemetry
heat lost by the hot body = heat gained by the cold body
mass of iron x specific heat of iron x decrease in temperature = mass of water x specific heat of water x increase in temperature
1.5 x 449 x (500 - T) = 20 x 4186 x (T - 18)
336750 - 673.5 T = 83720 T - 1506960
1843710 = 84393.5 T
T = 21.85 C