Answer:
a. 92.4%
Explanation:
Based on the reaction:
2Na₃(CO₃)(HCO₃)·2H₂O(s) → 3Na₂CO₃(s) + CO₂(g) + 5H₂O(g)
To obtain the percent yield you need to obtain moles of trona and calculate thoeretical moles of Na₂CO₃, and the ratio of obtained moles / theoretical moles of Na₂CO₃ give percent yield, thus:
Moles of trona:
1.00 metric ton × (1x10³kg / 1 metric ton) × ( 1000moles /226.03 kg) = <em>4424 moles</em>
The theoretical moles of Na₂CO₃ that produce 4424 moles of trona are (Based on the reaction, 2 moles of trona produce 3 moles of Na₂CO₃):
4424 moles trona × (3 moles Na₂CO₃ / 2 moles trona) = <em>6636 moles of Na₂CO₃.</em>
The obtained moles of Na₂CO₃:
0.650 metric ton × (1x10³kg / 1 metric ton) × (1000 moles / 105.99kg) = <em>6133 moles</em>
The ratio of obtained moles / theoretical moles gives:
6133 moles / 6636 moles = 0.924 = <em>92.4%</em>
I hope it helps!
Answer is: Allena is correct. It is an element because it is only made of chlorine atoms.
A chemical element bonded to an identical chemical element is not a chemical compound since it is made from only one element and not from two different elements. Chlorine is molecule, but not compound.
There is 1 H atom: (1)(+1) = +1 The oxidation number of O is -2. There are 4 O atoms here: (4)(-2) = -8 So the oxidation state of Cl is +7.
NOTE: The maximum positive oxidation number for chlorine is +7,<span> the same as its group number (VII).</span>
Because some machine might not work and would give you the wrong answer
Answer:
At -13
, the gas would occupy 1.30L at 210.0 kPa.
Explanation:
Let's assume the gas behaves ideally.
As amount of gas remains constant in both state therefore in accordance with combined gas law for an ideal gas-

where
and
are initial and final pressure respectively.
and
are initial and final volume respectively.
and
are initial and final temperature in kelvin scale respectively.
Here
,
,
,
and
Hence 



So at -13
, the gas would occupy 1.30L at 210.0 kPa.