Answer:
We need 12.26 grams H2SO4
Explanation:
Step 1: Data given
Volume of a H2SO4 solution = 500 mL = 0.500 L
Concentration of the H2SO4 solution = 0.250 M
Molar mass of H2SO4 = 98.08 g/mol
Step 2: Calculate moles H2SO4
Moles H2SO4 = concentration * volume
Moles H2SO4 = 0.250 M * 0.500 L
Moles H2SO4 = 0.125 moles
Step 3: Calculate mass of H2SO4
Mass of H2SO4 = moles * molar mass
Mass of H2SO4 = 0.125 moles * 98.08 g/mol
Mass of H2SO4 = 12.26 grams
We need 12.26 grams H2SO4
Answer:
5.46 8 x 10²³ molecules.
Explanation:
- <em>Knowing that every one mole of a substance contains Avogadro's no. of molecules (NA = 6.022 x 10²³).</em>
<em><u>Using cross multiplication:</u></em>
1.0 mole → 6.022 x 10²³ molecules.
9.08 x 10⁻¹ mole → ??? molecules.
∴ The no. of molecules of CO₂ are in 9.08 x 10⁻¹ mol = (6.022 x 10²³ molecules) ( 9.08 x 10⁻¹ mole) / (1.0 mol) = 5.46 8 x 10²³ molecules.
The answer is atoms good luck
<h2>Answer : Option C) Smaller volume - crowded particles - more collisions - high pressure</h2><h3>Explanation : </h3>
The kinetic molecular theory of gases explains that if there is small volume of gas there will be more crowding of the gas molecules inside the container. The crowded gas molecules will collide with each other and also with the walls of container as a result, exchange of energies will take place. Which will increase the pressure inside the container, and will raise the pressure than the initial pressure.
75% would be your answer since the lower letter represents a shorter plant