1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Olegator [25]
3 years ago
11

AlCl3 + Na NaCl + Al Did Cl change oxidation number?

Chemistry
2 answers:
gizmo_the_mogwai [7]3 years ago
6 0
Yes. If this is the balanced equation:

AlCl3 + 3Na —— 3NaCl + Al

then Al was reduced from a 3+ oxidation (to neutralize the 3- from the chlorine) to a 0 oxidation (elemental ground state).
damaskus [11]3 years ago
5 0

Answer : There is no change takes place in the oxidation number of Cl.

Explanation :

The given chemical reaction is,

AlCl_3+Na\rightarrow NaCl+Al

This reaction is an unbalanced reaction because the chlorine atoms are not balanced.

In order to balance the chemical reaction, the coefficient 3 is put before the Na and NaCl.

The balanced chemical reaction will be,

AlCl_3+3Na\rightarrow 3NaCl+Al

Now we have to calculate the oxidation number of all the elements.

In AlCl_3, the oxidation number of Al and Cl are, (+3) and (-1) respectively.

The oxidation number Na and Al are, zero (0)

In NaCl, the oxidation number of Na and Cl are, (+1) and (-1) respectively.

From this we conclude that the oxidation number of Cl changes from (-1) to (-1) that means remains same.

Therefore, there is no change takes place in the oxidation number of Cl.

You might be interested in
the spectral lines observed for hydrogen arise from transitions from excited states back to the n=2 principle quantum level. Cal
Sunny_sXe [5.5K]

Rydberg formula is given by:

\frac{1}{\lambda } = R_{H}\times (\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}} )

where, R_{H} = Rydberg  constant = 1.0973731568508 \times 10^{7} per metre

\lambda = wavelength

n_{1} and n_{2} are the level of transitions.

Now, for n_{1}= 2 and n_{2}= 6

\frac{1}{\lambda} = 1.0973731568508 \times 10^{7} \times (\frac{1}{2^{2}}-\frac{1}{6^{2}} )

= 1.0973731568508 \times 10^{7} \times (\frac{1}{4}-\frac{1}{36} )

= 1.0973731568508 \times 10^{7} \times (0.25-0.0278 )

= 1.0973731568508 \times 10^{7} \times 0.23

= 0.2523958\times 10^{7}

\lambda = \frac{1}{0.2523958\times 10^{7}}

= 3.9620\times 10^{-7} m

= 396.20\times 10^{-9} m

= 396.20 nm

Now, for n_{1}= 2 and n_{2}= 5

\frac{1}{\lambda} = 1.0973731568508 \times  10^{7} \times (\frac{1}{2^{2}}-\frac{1}{5^{2}} )

= 1.0973731568508 \times 10^{7} \times (0.25-0.04 )

= 1.0973731568508 \times 10^{7} \times (0.21 )

= 0.230 \times  10^{7}

\lambda= \frac{1}{0.230 \times 10^{7}}

= 4.3478 \times 10^{-7} m

= 434.78\times 10^{-9} m

= 434.78 nm

Now, for n_{1}= 2 and n_{2}= 4

\frac{1}{\lambda} = 1.0973731568508 \times  10^{7} \times (\frac{1}{2^{2}}-\frac{1}{4^{2}} )

=  1.0973731568508 \times 10^{7} \times (0.25-0.0625 )

= 1.0973731568508 \times 10^{7} \times (0.1875 )

= 0.20575 \times 10^{7}

\lambda= \frac{1}{0.20575 \times 10^{7}}

= 4.8602 \times 10^{-7} m

= 486.02 \times 10^{-9} m

= 486.02 nm

Now, for n_{1}= 2 and n_{2}= 3

\frac{1}{\lambda} = 1.0973731568508 \times 10^{7} \times (\frac{1}{2^{2}}-\frac{1}{3^{2}} )

=  1.0973731568508 \times 10^{7} \times (0.25-0.12 )

=  1.0973731568508 \times 10^{7} \times (0.13 )

= 0.1426585\times 10^{7}

\lambda= \frac{1}{0.1426585\times 10^{7}}

= 7.0097 \times 10^{-7} m

= 700.97 \times 10^{-9} m

= 700.97 nm



5 0
2 years ago
Read 2 more answers
The atomic number is determined only by the number of ________ in the nucleus of an atom. But, in a neutral atom it also represe
sveticcg [70]

Hello!

The atomic number is determined only by the number of protons in the nucleus of an atom. But, in a neutral atom it also represents the number of electrons in the electron cloud.


Neutrons are only important in the nucleus for helping us find atomic weight, which varies as we move along the perodic table and does not always equal the same amount of it's atomic number. Which is why it would not be a suitable answer for the first blank space. Electrons do not work either as they do not exist inside the nucleus but rather outside the atom.

The second space, since it states is in the electron cloud, we can deduct that electrons would be an appropriate answer there.

If you need anymore help feel free to ask, but I hope this answers your question.

5 0
2 years ago
If calcium carbonate (CaCO3) decomposes, what would the product of the reaction be?
NemiM [27]

It was C) CaO on edg

8 0
2 years ago
Read 2 more answers
Hello summer roses~<br>help me with these questions ​
Olegator [25]

Answer:

  • The process of "slaking" of lime refers to the use of excess water for hydration. balanced equation: CaO + H₂0 = Ca(OH)₂ + heat released

  • First lets know which oxide is quick lime - CaO, is basic in nature as a result it combines with acidic oxides using heat. For example we are gonna make it react with silicon dioxide which is a very weak acid: CaO + SiO₂ → CaSiO₃

Hope this helps ~

3 0
2 years ago
Consider the reaction between iodine gas and chlorine gas to form iodine monochloride. A reaction mixture at 298.15k initially c
uranmaximum [27]

Step 1 : Write balanced chemical equation

The balanced chemical equation for the reaction between iodine gas and chlorine gas is given below.

I_{2}  (g) + Cl_{2}  (g) ----->  2 ICl (g)

Step 2 : Set up ICE table

We will set up an ICE table for the above reaction

Following points are considered while drawing ICE table

- The initial concentration of product is assumed as 0

- The change in concentration (C) is assumed as x. Change (x) is negative for reactants and positive for products

- The coefficients in balanced equation are considered while writing C values

Check attached file for ICE table

Step 3 : Set up equilibrium constant equation

The equation for equilibrium constant can be written as

K_{eq} = \frac{[ICl]^{2}}{[I_{2}][Cl_{2}]}

Step 4 : Solving for x

Keq at 298.15 K is given as 81.9

Let us plug in the equilibrium values (E) for I₂, Cl₂ and ICl from ICE table

81.9 = \frac{(2x)^{2}}{(0.437-x) (0.269-x)}

81.9 = \frac{(2x)^{2}}{x^{2} -0.706x + 0.118}

(2x)^{2} = 81.9 [ x^{2} -0.706x + 0.118]

4x^{2} = 81.9x^{2} -57.8x +9.66

77.9x^{2} -57.8x+9.66 = 0

Solving the above equation using quadratic formula we get

x = 0.488 or x = 0.254

The value 0.488 cannot be used because the change (C) cannot be greater that initial concentration of the reactants.

Therefore the change in concentration of the gases during the reaction is 0.254 M

Hence, x = 0.254 M

From the ICE table, we know that the equilibrium concentration of ICl is 2x

[ICl]_{eq} = 2 ( 0.254) = 0.508 M

The concentration of ICl when the reaction reaches equilibrium is 0.508 M

6 0
3 years ago
Other questions:
  • For h2o2(g), find the value of δh∘f. (use appendix c in the textbook.)
    6·2 answers
  • Give the quantum number set for one electron in the 3p sublevel of a sulfur (S) atom.
    8·1 answer
  • 6. Metals like aluminum can react with _______ to form coatings that _______ corrosion. A. iron; prevent
    13·2 answers
  • What is the molality of a solution that has 3 mol of glucose in 6 kg of water?
    5·2 answers
  • In general, what is used to separate mixtures?
    11·1 answer
  • In a redox reaction, what happens to a substance’s charge when it is oxidized?
    7·2 answers
  • A student finds two unlabeled flasks of clear liquids. One is believed to be 0.1 m nacl and the other to be 0.1 m naclo3. What i
    6·1 answer
  • Please hurry I’m stuck!!
    11·2 answers
  • 10. i really really need help plz don't waste time, thx :)
    5·2 answers
  • How does a covalent bond form?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!