1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uranmaximum [27]
3 years ago
7

Eddie set up a science experiment with plants. He bought three small tomato plants, all about the same size and height, and set

them all in his front window. He watered the first plant every day, the second plant every other day, and the third plant every third day, making sure to use the same amount of water each time. He planned to measure the height of each tomato plant after three weeks. What was the manipulated variable in Eddie's experiment?
Physics
1 answer:
Elza [17]3 years ago
8 0

Answer:

The frequency of watering

Explanation:

The manipulated variable in this case is the frequency of adding water to the experimental plants.

While the first plant can be said to have a watering frequency of a day, the second had a watering frequency of 2 days while the third plant had a watering frequency of 3 days.

The experiment must have been set up to determine the effects of frequency of watering on the growth of tomato plants.

You might be interested in
A lightbulb is rated by the power that it dissipates when connected to a given voltage. For a lightbulb connected to 120 V house
zhenek [66]

1. increase, 2. decrease

3 0
3 years ago
Nina is doing a workout where she runs at 50% speed for 3 minutes, 75% speed for 2 minutes, and 100% speed for 30 seconds. This
Dovator [93]
D. Interval training
7 0
1 year ago
Read 2 more answers
If an object is thrown in an upward direction from the top of a building 160 ft. High at an initial speed of 21.82 mi/h what is
viktelen [127]
To solve this problem we are going to use tow kinematic equations for falling objects.
1. Kinematic equation for final velocity: V_{f}=V_{i}+gt
where
V_{f} is the final velocity 
V_{i} is the initial velocity 
g is the acceleration due to gravity 32 \frac{ft}{s^2}
t is the time 
2. Kinematic equation for distance: d=V_{i}t+ \frac{1}{2} gt^2
where
d is the distance 
V_{i} is the initial velocity 
V_{f} is the final velocity
g is the acceleration due to gravity 32 \frac{ft}{s^2}
t is the time 

First, we are going to convert 21.82 mi/h to ft/s:
21.82 \frac{mi}{h} =31.21 \frac{ft}{s}

Next, we are going to use the first equation to find how long it takes for the rock to reach its maximum height.
We know for our problem that the object is thrown in upward direction, so its velocity at its maximum height (before falling again) will be zero; therefore: V_{f}=0. We also know that it initial speed is 31.21 ft/s, so V_{i}=31.21. Lets replace those values in our formula to find t:
V_{f}=V_{i}+gt
0=31.21+(-32)t
-32t=-31.21
t= \frac{-31.21}{-32}
t=0.98seconds

Next, we are going to use that time in our second kinematic equation to find the distance the object reach at its maximum height:
d=V_{i}t+ \frac{1}{2} gt^2
d=31.21(0.98)+ \frac{1}{2} (-32)(0.98)^2
d=15.22ft 

Now we can add the height of the building and the maximum height of the object:
d=160+15.22=175.22ft

Next, we are going to use that height (distance) in our second kinematic equation one more time to fin how long it takes for the object to fall from its maximum height to the ground:
d=V_{i}t+ \frac{1}{2} gt^2
175.22=31.21t+ \frac{1}{2} (32)t^2
16t^2+31.21t-175.22=0
t=2.47 or t=-4.43
Since time cannot be negative, t=2.47 is the time it takes the object to fall to the ground. 

Finally, we can use that time in our first kinematic equation to find the final speed of the object when it hits the ground:
V_{f}=V_{i}+gt
V_{f}=31.21+(32)(2.47)
V_{f}=110.25 ft/s

We can conclude that the speed of the object when it hits the ground is 110.25 ft/s


5 0
2 years ago
According to John Dalton’s observations when elements combine in a compound
gayaneshka [121]

The answer is A.) The ratio of thier masses is always the same

3 0
3 years ago
Read 2 more answers
The angle between the two force of magnitude 20N and 15N is 60 degrees (20N force being horizontal) determine the resultant in m
BARSIC [14]

A) The resultant force is 30.4 N at 25.3^{\circ}

B) The resultant force is 18.7 N at 43.9^{\circ}

Explanation:

A)

In order to find the resultant of the two forces, we must resolve each force along the x- and y- direction, and then add the components along each direction to find the components of the resultant.

The two forces are:

F_1 = 20 N at 0^{\circ} above x-axis

F_2 = 15 N at 60^{\circ} above y-axis

Resolving each force:

F_{1x}=F_1 cos \theta = (20)(cos 0)=20 N\\F_{1y}=F_1 sin \theta =(20)(sin 0)=0 N

F_{2x}=F_2 cos \theta = (15)(cos 60)=7.5 N\\F_{2y}=F_2 sin \theta =(15)(sin 60)=13.0 N

So, the components of the resultant are:

F_x = F_{1x}+F_{2x}=20+7.5 = 27.5 N\\F_y = F_{1y}+F_{2y}=0+13.0=13.0 N

And the magnitude of the resultant is:

F=\sqrt{F_x^2+F_y^2}=\sqrt{27.5^2+13.0^2}=30.4 N

And the direction is:

\theta=tan^{-1}(\frac{F_y}{F_x})=tan^{-1}(\frac{13.0}{27.5})=25.3^{\circ}

B)

In this case, the 15 N is applied in the opposite direction to the 20 N force. Therefore we need to re-calculate its components, keeping in mind that the angle of the 15 N force this time is

\theta=180^{\circ}-60^{\circ}=120^{\circ}

So we have:

F_{2x}=F_2 cos \theta = (15)(cos 120)=-7.5 N\\F_{2y}=F_2 sin \theta =(15)(sin 120)=13.0 N

So, the components of the resultant this time are:

F_x = F_{1x}+F_{2x}=20-7.5 = 12.5 N\\F_y = F_{1y}+F_{2y}=0+13.0=13.0 N

And the magnitude is:

F=\sqrt{F_x^2+F_y^2}=\sqrt{13.5^2+13.0^2}=18.7 N

And the direction is:

\theta=tan^{-1}(\frac{F_y}{F_x})=tan^{-1}(\frac{13.0}{13.5})=43.9^{\circ}

Learn more about vector addition:

brainly.com/question/4945130

brainly.com/question/5892298

#LearnwithBrainly

7 0
3 years ago
Other questions:
  • Dr. Perez is part of a team of researchers who are working on designing and building a probe to study solar flares. What conditi
    10·2 answers
  • One strategy in a snowball fight is to throw a snowball at a high angle over level ground. While your opponent is watching the f
    11·1 answer
  • A steel railroad track has a length of 40 m when the temperature is −5 ◦C. What is the increase in the length of the rail on a h
    12·2 answers
  • Help!! plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz!!ASAP!!!
    5·2 answers
  • Two metal balls are the same size but one weighs twice as much as the other. The balls are dropped from the roof of a single sto
    9·1 answer
  • 6. Mass affects how fast an object falls.<br> True<br> False
    13·2 answers
  • When you see an object that is not a light source, you are seeing light waves ___ by the object
    8·1 answer
  • 3. Which forces would exist in a free body diagram of this car accelerating along the highway?
    6·1 answer
  • What happens to the period of the motion when the spring constant increases? Does it increase, decrease, or stay the same?
    8·1 answer
  • Struggling with this, pls answer:( Brainliest to the (FIRST) right answer
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!