Answer:
The intensity of laser 2 is 4 times of the intensity of laser 1.
Explanation:
The intensity in terms of electric field is given by :

E is electric field
It means, 
In this problem, lasers 1 and 2 emit light of the same color, and the electric field in the beam of laser 1 is twice as strong as the e-field of laser 2.
Let E is electric field in the beam of laser 1 and E' is the electric field in the beam of laser 2. So,

We have,
E'=2E
So,

So, the intensity of laser 2 is 4 times of the intensity of laser 1.
Answer: X = 52,314.12 N
Explanation: Let X be the force the feet of the athlete exerts on the floor.
According to newton's third law of motion the floor gives an upward reaction based on the weight of the athlete and the barbell which is known as the normal reaction ( based on the mass of the athlete and the barbell)
Mass of athlete = 87kg, mass of barbell = 600/ hence total normal reaction from the floor = 87* 61.22/ 9.8 *9.8 = 52,200N.
The athlete lifts the barbell from rest thus making it initial velocity u=0, distance covered = S = 0.65m and the time taken = 1.3s
The acceleration of the barbell is gotten by using the equation of constant acceleration motion
S= ut + 1/2at²
But u = 0
S = 1/2at²
0.65 = 1/2 *a (1.3)²
0.65 = 1.69 * a/2
0.65 * 2 = 1.69 * a
a = 0.65 * 2/ 1.69
a = 0.77m/s²
According to newton's second law of motion
Resultant force = mass * acceleration
And resultant force in this case is
X - 52,200 = (87 + 61.22) * 0.77
X - 52,200 = 148.22 * 0.77
X - 52, 200 = 114.132
X = 114.132 + 52,200
X = 52,314.12 N
Matter. I don't really know how to explain it. Sorry. But anyways, Hope this helps!
Answer:
According to Hook's law, we know,
strain/stress =Constant
Explanation: So, the ratio between stress and strain is always constant.
So, if stress is increased, then strain changes in that way so that this ratio always remains constant.