Answer:
<h2>0.065 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>0.065 g/mL</h3>
Hope this helps you
Answer:
B, adult
Explanation:
The stage of an animals life cycle when it reproduce.
Egg a structure containing food that young animal need in order grow hatching the process by which an animal breaks out of an egg
When cooled by liquid nitrogen, the balloon shrinks (not as much as the air-filled balloon) and it sinks down on the table. When heating up, the balloon slowly rises and flies up in the air again. Explanation 1: The volume of the balloon decreases by the low temperature, because the gas inside is cooled down.
The solution 550 ml total and first we will find the amount of alcohol. 3% = 0.03 550 ml x .03 = 16.5 ml alcohol
Then to find the amount of water used, we just have to subtract the amount of alcohol from the total volume
550 ml total - 16.5 ml alcohol = 533.5 ml water
Answer:
27 min
Explanation:
The kinetics of an enzyme-catalyzed reaction can be determined by the equation of Michaelis-Menten:
![v = \frac{vmax[S]}{Km + [S]}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bvmax%5BS%5D%7D%7BKm%20%2B%20%5BS%5D%7D)
Where v is the velocity in the equilibrium, vmax is the maximum velocity of the reaction (which is directed proportionally of the amount of the enzyme), Km is the equilibrium constant and [S] is the concentration of the substrate.
So, initially, the velocity of the formation of the substrate is 12μmol/9min = 1.33 μmol/min
If Km is a thousand times smaller then [S], then
v = vmax[S]/[S]
v = vmax
vmax = 1.33 μmol/min
For the new experiment, with one-third of the enzyme, the maximum velocity must be one third too, so:
vmax = 1.33/3 = 0.443 μmol/min
Km will still be much smaller then [S], so
v = vmax
v = 0.443 μmol/min
For 12 μmol formed:
0.443 = 12/t
t = 12/0.443
t = 27 min