Answer:
The mass of
in the container is 2.074 gram
Explanation:
Given:
Volume of
lit
Equilibrium constant 
The reaction in which
is produced
⇄ 
Here equal moles of
and
is formed.
From the formula of equilibrium constant,


M
Above value shows,

So in 2 L no. moles of
=
moles.
So mass of 0.122 mole of
is =
g
Therefore, the mass of
in the container is 2.074 gram
Holding
temperature and pressure constant
<span>the
most important feature in determining the phase of a given organic compound is
pressure. ransfers of organic compounds
between phases are controlled by molecular interactions (intermolecular bonding)
in the two phases between which transfer is occurring. This is governed
by temperature and pressure</span>
This uses something called <span>Le Chatelier's principle. It states essentially that any stress put upon a system will be corrected.
In more simple terms, it means that in an equilibrium, such as the equation N2(g) + 3H2(g) <=> 2NH3(g), removing a reactant will cause the system to create more of said reactant to compensate for its loss, or adding excess reactant will cause the system to remove some of the added reactant. For future reference, the same principle applies to products in an equilibrium as well.
In this case, hydrogen gas is a reactant, and hydrogen is being removed. According to </span><span>Le Chatelier's principle, the system will shift to create more hydrogen gas. In essence, it will shift in the direction of the hydrogen gas, so there will be a shift toward the reactants.
To clear something up, Keq will not change, as it is a constant value with constant conditions (such as temperature, pressure, etc.).</span>
Given the molar mass of Nitrogen is 14.01g/mol you can use that to solve for the moles of nitrogen.
0.235g(1mol/14.01g) = .0168 moles.
I believe that sugar will desolve the fastest because of the room temperature