1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina86 [1]
3 years ago
15

Which of the following can minimize engine effort in save fuel

Engineering
2 answers:
pentagon [3]3 years ago
7 0

Answer:

hmm

Explanation:

How to Save Fuel

Keep your vehicle's engine in good condition.

Maintain proper air pressure in your tires.

The faster you travel, the greater your fuel consumption is.

Try to speed up gradually when you stop for a traffic light.

Try to drive smoothly.

Do not allow your engine to idle.

hope this helps

Anton [14]3 years ago
4 0

Answer:

accelerating gradually and changing gears smoothly

Explanation:

anticipating stops avoiding applying brakes for sudden stops.

You might be interested in
A light bar AD is suspended from a cable BE and supports a 20-kg block at C. The ends A and D of the bar are in contact with fri
babymother [125]

Answer:

Tension in cable BE= 196.2 N

Reactions A and D both are  73.575 N

Explanation:

The free body diagram is as attached sketch. At equilibrium, sum of forces along y axis will be 0 hence

T_{BE}-W=0 hence

T_{BE}=W=20*9.81=196.2 N

Therefore, tension in the cable, T_{BE}=196.2 N

Taking moments about point A, with clockwise moments as positive while anticlockwise moments as negative then

196.2\times 0.125- 196.2\times 0.2+ D_x\times 0.2=0

24.525-39.24+0.2D_x=0

D_x=73.575 N

Similarly,

A_x-D_y=0

A_x=73.575 N

Therefore, both reactions at A and D are 73.575 N

7 0
3 years ago
Along with refining craft skills another way to increase the odds for career advancement is to
Xelga [282]

The acquisition of additional certifications with a personal refined craft skills can increase the odds for career advancemen.

<h3>What is a career advancement?</h3>

An advancement is achieved in a career if a professional use their skill sets, determination or perserverance to achieve new career height.

An example of a career advancement is when an employee progresses from entry-level position to management and transits from an occupation to another.

Therefore, the Option A is correct.

Read more about career advancement

<em>brainly.com/question/7053706</em>

7 0
2 years ago
Please help<br> describe the impact that a toy robot has had or could have on its intended audience
GuDViN [60]
Depending on the age the toy is made for it could teach younger children things such as letters and numbers and for a older kid it could teach them how different things are put in the robot to help it work
3 0
3 years ago
Read 2 more answers
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
For a bolted assembly with eight bolts, the stiffness of each bolt is kb = 1.0 MN/mm and the stiffness of the members is km = 2.
rjkz [21]

Answer:

a) 0.978

b) 0.9191

c) 1.056

d) 0.849

Explanation:

Given data :

Stiffness of each bolt = 1.0 MN/mm

Stiffness of the members = 2.6 MN/mm per bolt

Bolts are preloaded to 75% of proof strength

The bolts are M6 × 1 class 5.8 with rolled threads

Pmax =60 kN,  Pmin = 20kN

<u>a) Determine the yielding factor of safety</u>

n_{p} = \frac{S_{p}A_{t}  }{CP_{max}+ F_{i}  }  ------ ( 1 )

Sp = 380 MPa,   At = 20.1 mm^2,   C = 0.277,  Pmax = 7500 N,  Fi = 5728.5 N

Input the given values into the equation above

equation 1 becomes ( np ) = \frac{380*20.1}{0.277*7500*5728.5} = 0.978

note : values above are derived values whose solution are not basically part of the required solution hence they are not included

<u>b) Determine the overload factor of safety</u>

n_{L} =  \frac{S_{p}A_{t}-F_{i}   }{C(P_{max} )}  ------- ( 2 )

Sp =  380 MPa,   At =  20.1 mm^2, C = 0.277,  Pmax = 7500 N,  Fi = 5728.5 N

input values into equation 2 above

hence : n_{L} = 0.9191n_{L}  = 0.9191

<u>C)  Determine the factor of safety based on joint separation</u>

n_{0} = \frac{F_{i} }{P_{max}(1 - C ) }

Fi =  5728.5 N,  Pmax = 7500 N,  C = 0.277,

input values into equation above

Hence n_{0} = 1.056

<u>D)  Determine the fatigue factor of safety using the Goodman criterion.</u>

nf = 0.849

attached below is the detailed solution .

4 0
3 years ago
Other questions:
  • When fermentation units are operated with high aeration rates, significant amounts of water can be evaporated into the air passi
    13·1 answer
  • 1. (16 points) True or False, one point each, Write down F (false) or T (true). ___ (01) In a mechanical design, it is recommend
    12·1 answer
  • What are some possible reasons for the sudden development of the cell theory
    14·1 answer
  • What type of drawing would civil engineers use if they needed to show an
    11·1 answer
  • Which of the following is one of the three basic elements of a blueprint?
    5·1 answer
  • technician A says that a technician can progress to different jobs within the industry. Technician B says that career in the aut
    5·1 answer
  • Paul is constructing an aquarium. The exterior of the aquarium in made of white marble. Which design principle element is being
    9·1 answer
  • For methyl chloride at 100°C the second and third virial coefficients are: B = −242.5 cm 3 ·mol −1 C = 25,200 cm 6 ·mol −2 Calcu
    7·1 answer
  • 5x−2y=30 Complete the missing value in the solution to the equation. (8, )
    15·1 answer
  • I need this answer please help
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!