Answer:
the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C
Explanation:
Given:
d₁ = diameter of the tube = 1 cm = 0.01 m
d₂ = diameter of the shell = 2.5 cm = 0.025 m
Refrigerant-134a
20°C is the temperature of water
h₁ = convection heat transfer coefficient = 4100 W/m² K
Water flows at a rate of 0.3 kg/s
Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?
First at all, you need to get the properties of water at 20°C in tables:
k = 0.598 W/m°C
v = 1.004x10⁻⁶m²/s
Pr = 7.01
ρ = 998 kg/m³
Now, you need to calculate the velocity of the water that flows through the shell:

It is necessary to get the Reynold's number:

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

The overall heat transfer coefficient:

Here

Substituting values:

Answer:
The sentence excerpted from the e-mail uses passive voice.
Given the purpose of your message, this voice is appropriate.
Explanation:
Because the objective is to remedy the situation a passive voice is great because it emphasizes the action and the object instead of the subject.
We want to emphasize the document and the incorrect information, not our colleague.
Answer: freemasonry is Being a Mason is about a father helping his son make better decisions; a business leader striving to bring morality to the workplace; a thoughtful man learning to work through tough issues in his life.
Explanation:
Answer:
a)R= sqrt( wt³/12wt)
b)R=sqrt(tw³/12wt)
c)R= sqrt ( wt³/12xcos45xwt)
Explanation:
Thickness = t
Width = w
Length od diagonal =sqrt (t² +w²)
Area of raectangle = A= tW
Radius of gyration= r= sqrt( I/A)
a)
Moment of inertia in the direction of thickness I = w t³/12
R= sqrt( wt³/12wt)
b)
Moment of inertia in the direction of width I = t w³/12
R=sqrt(tw³/12wt)
c)
Moment of inertia in the direction of diagonal I= (w t³/12)cos 45=( wt³/12)x 1/sqrt (2)
R= sqrt ( wt³/12xcos45xwt)
Answer:
116.3 electrons
Explanation:
Data provided in the question:
Time, t = 2.55 ps = 2.55 × 10⁻¹² s
Current, i = 7.3 μA = 7.3 × 10⁻⁶ A
Now,
we know,
Charge, Q = it
thus,
Q = (7.3 × 10⁻⁶) × (2.55 × 10⁻¹²)
or
Q = 18.615 × 10⁻¹⁸ C
Also,
We know
Charge of 1 electron, q = 1.6 × 10⁻¹⁹ C
Therefore,
Number of electrons past a fixed point = Q ÷ q
= [ 18.615 × 10⁻¹⁸ ] ÷ [ 1.6 × 10⁻¹⁹ ]
= 116.3 electrons