Answer:
19063.6051 g
Explanation:
Pressure = Atmospheric pressure + Gauge Pressure
Atmospheric pressure = 97 kPa
Gauge pressure = 500 kPa
Total pressure = 500 + 97 kPa = 597 kPa
Also, P (kPa) = 1/101.325 P(atm)
Pressure = 5.89193 atm
Volume = 2.5 m³ = 2500 L ( As m³ = 1000 L)
Temperature = 28 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (28.2 + 273.15) K = 301.15 K
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
5.89193 atm × 2500 L = n × 0.0821 L.atm/K.mol × 301.15 K
⇒n = 595.76 moles
Molar mass of oxygen gas = 31.9988 g/mol
Mass = Moles * Molar mass = 595.76 * 31.9988 g = 19063.6051 g
Answer:
15625 moles of methane is present in this gas deposit
Explanation:
As we know,
PV = nRT
P = Pressure = 230 psia = 1585.79 kPA
V = Volume = 980 cuft = 27750.5 Liters
n = number of moles
R = ideal gas constant = 8.315
T = Temperature = 150°F = 338.706 Kelvin
Substituting the given values, we get -
1585.79 kPA * 27750.5 Liters = n * 8.315 * 338.706 Kelvin
n = (1585.79*27750.5)/(8.315 * 338.706) = 15625
Answer:
The one end of a hollow square bar whose side is (10+N/100) in wit
Explanation:
Answer:
Explained
Explanation:
Cold working: It is plastic deformation of material at temperature below recrystallization temperature. whereas hot working is deforming material above the recrystallization temperature.
Given melting point temp of lead is 327° C and lead recrystallizes at about
0.3 to 0.5 times melting temperature which will be higher that 20°C. Hence we can conclude that at 20°C lead will under go cold working only.