1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natima [27]
3 years ago
6

What is digital communication?​

Engineering
1 answer:
mart [117]3 years ago
4 0

Answer:

Any exchange of data that transmits the data in a digital form is a digital communication.

You might be interested in
Refrigerant-134a at 400 psia has a specific volume of 0.1144 ft3/lbm. Determine the temperature of the refrigerant based on (a)
vekshin1

Answer:

a) Using Ideal gas Equation, T = 434.98°R = 435°R

b) Using Van Der Waal's Equation, T = 637.32°R = 637°R

c) T obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is T = 559.67°R = 560°R

Explanation:

a) Ideal gas Equation

PV = mRT

T = PV/mR

P = pressure = 400 psia

V/m = specific volume = 0.1144 ft³/lbm

R = gas constant = 0.1052 psia.ft³/lbm.°R

T = 400 × 0.1144/0.1052 = 434.98 °R

b) Van Der Waal's Equation

T = (1/R) (P + (a/v²)) (v - b)

a = Van Der Waal's constant = (27R²(T꜀ᵣ)²)/(64P꜀ᵣ)

R = 0.1052 psia.ft³/lbm.°R

T꜀ᵣ = critical temperature for refrigerant-134a (from the refrigerant tables) = 673.6°R

P꜀ᵣ = critical pressure for refrigerant-134a (from the refrigerant tables) = 588.7 psia

a = (27 × 0.1052² × 673.6²)/(64 × 588.7)

a = 3.596 ft⁶.psia/lbm²

b = (RT꜀ᵣ)/8P꜀ᵣ

b = (0.1052 × 673.6)/(8 × 588.7) = 0.01504 ft³/lbm

T = (1/0.1052) (400 + (3.596/0.1144²) (0.1144 - 0.01504) = 637.32°R

c) The temperature for the refrigerant-134a as obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is

T = 100°F = 559.67°R

7 0
3 years ago
What is the never repeat rule
Soloha48 [4]
Don't repeat yourself (DRY, or sometimes do not repeat yourself) is a principle of software development aimed at reducing repetition of software patterns,[1] replacing it with abstractions or using data normalization to avoid redundancy.
4 0
3 years ago
A(n) ____________________ measures the resistance to current flow in a circuit.
yulyashka [42]

Answer: OHMMETER & MEGOHMMETER:

Explanation: The ohmmeter measures circuit resistance; the megohmmeter measures the high resistance of insulation. A meter used to measure electric current. It is connected as part of a circuit.

6 0
3 years ago
A garden hose fills a 2-gallon bucket in 5 seconds. The number of gallons, g (y), is proportional to the number of seconds, t (x
stepladder [879]

Answer:

0.4 gallons per second

Explanation:

A function shows the relationship between an independent variable and a dependent variable.

The independent variable (x values) are input variables i.e. they don't depend on other variables while the dependent variable (y values) are output variables i.e. they depend on other variables.

The rate of change or slope or constant of proportionality is the ratio of the dependent variable (y value) to the independent variable (x value).

Given that the garden hose fills a 2-gallon bucket in 5 seconds. The dependent variable = g = number of gallons, the independent variable = t = number of seconds.

Constant of proportionality = g / t = 2 / 5 = 0.4 gallons per second

5 0
3 years ago
In the final stages of production, a pharmaceutical is sterilized by heating it from 25 to 75°C as it moves at 0.2 m/s through a
stepan [7]

Answer:

The required heat flux = 12682.268 W/m²

Explanation:

From the given information:

The initial = 25°C

The final = 75°C

The volume of the fluid = 0.2 m/s

The diameter of the steel tube = 12.7 mm = 0.0127 m

The fluid properties for density \rho = 1000 kg/m³

The mass flow rate of the fluid can be calculated as:

m = pAV

m = \rho \dfrac{\pi}{4}D^2V

m = 1000 \times \dfrac{\pi}{4} \times ( 0.0127)^2 \times 0.2

m = 0.0253 \ kg/s

To estimate the amount of the heat by using the expression:

q = mc_p(T_{final}-T_{initial})

q = 0.0253 × 4000(75-25)

q = 101.2 (50)

q = 5060 W

Finally, the required heat of the flux is determined by using the formula:

q" = \dfrac{q}{A_s}

q" = \dfrac{q}{\pi D L}

q" = \dfrac{5060}{\pi \times 0.0127 \times 10}

q" =  12682.268 W/m²

The required heat flux = 12682.268 W/m²

3 0
3 years ago
Other questions:
  • What Type of diploma do you need in order To the get into JMU
    12·1 answer
  • Bulk wind shear is calculated by finding the vector difference between the winds at two different heights. Using the supercell w
    12·1 answer
  • A decorative fountain was built so that water will rise to a hieght of 8 feet above the exit of the pipe. the pipe is 3/4 diamet
    5·1 answer
  • An AC generator supplies an rms voltage of 120 V at 50.0 Hz. It is connected in series with a 0.650 H inductor, a 4.80 μF capaci
    6·1 answer
  • Which of the following tape measure techniques can be used to achieve accurate measurements? Choose all that apply.
    14·1 answer
  • Does anyone know obamas last name???? please help its for a friend I swear!!!111!!11!
    8·1 answer
  • The cylinder C is being lifted using the cable and pulley system shown.
    8·1 answer
  • Time left 0:35:32 Three steel rod (E = 200 GPa) supports 36 KN Load P. Each of the rods AB and CD has a 200 mm? cross- sectional
    13·1 answer
  • It is possible to design a reactor where the scy conductor and the nitrogen/ammonia electrode operate at different temperatures.
    12·1 answer
  • Why not just put all the set up steps within each step? it is because we want to keep our code __ ? (3 letters)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!