1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elanso [62]
3 years ago
14

When buttons or switches are pressed by humans for arbitrary periods of time, we need to convert a signal level to a pulse. In t

he following FSM, whenever the input L goes from low to high, the level-to-pulse converter produces a single pulse P, which is one clock period wide. Thus it is a synchronous rising-edge detector. Write a Verilog HDL for the following FSM. L=0 L- Level to pulse 00 Low input, Waiting for risg P0 01 Edge Detected! P=1 / 11 High input, Waiting for fall P=0 LEO CLK converter 1:0NoteDiagram cannot be explained

Engineering
1 answer:
ddd [48]3 years ago
6 0

Answer:

The FSM uses the states along with the generation at the P output on each of the positive edges of the CLK. The memory stores the previous state in the machine and the decoder generates a P output based on the previous state.

Explanation:

The code is in the image.

You might be interested in
How is the energy harnessed and converted into useful energy?
garri49 [273]

Answer:

1. How energy is harnessed?  

Another way to tap solar energy is by collecting the sun's heat. Solar thermal power plants use heat from the sun to create steam, which can then be used to make electricity. On a smaller scale, solar panels that harness thermal energy can be used for heating water in homes, other buildings, and swimming pools.

2. How is solar energy converted into useful energy?

Solar panels convert the sun's light into usable solar energy using N-type and P-type semiconductor material. When sunlight is absorbed by these materials, the solar energy knocks electrons loose from their atoms, allowing the electrons to flow through the material to produce electricity.

Explanation:

hope it helps, please mark as brainliest

6 0
3 years ago
Student A says hazardous waste can take the form of solid, liquid, or gas. Student B says hazardous waste can only take the form
lina2011 [118]

Answer:

Student A

Explanation:

hope this helps have a great day

4 0
3 years ago
In a planetary geartrain with a form factor of 8, the sun gear rotates clockwise at 5 rad⁄s and the ring gear rotates clockwise
lina2011 [118]

Answer:

D. N= 11. 22 rad/s (CW)

Explanation:

Given that

Form factor R = 8

Speed of sun gear = 5 rad/s (CW)

Speed of ring gear = 12 rad/s (CW)

Lets take speed of carrier gear is N

From Algebraic method ,the relationship between speed and form factor given as follows

\dfrac{N_{sun}-N}{N_{ring}-N}=-R

here negative sign means that ring and sun gear rotates in opposite direction

Lets take CW as positive and ACW as negative.

Now by putting the values

\dfrac{N_{sun}-N}{N_{ring}-N}=-R

\dfrac{5-N}{12-N}=-8

N= 11. 22 rad/s (CW)

So the speed of carrier gear is 11.22 rad/s clockwise.

8 0
3 years ago
Three point bending is better than tensile for evaluating the strength of ceramics. a)-True b)- False
amid [387]

Answer:

a)-True

Explanation:

Three point bending is better than tensile for evaluating the strength of ceramics. It is got a positive benefit to tensile for evaluating the strength of ceramics.

5 0
3 years ago
I. The time till failure of an electronic component has an Exponential distribution and it is known that 10% of components have
drek231 [11]

Answer:

(a) The mean time to fail is 9491.22 hours

The standard deviation time to fail is 9491.22 hours

(b) 0.5905

(c) 3.915 × 10⁻¹²

(d) 2.63 × 10⁻⁵

Explanation:

(a) We put time to fail = t

∴ For an exponential distribution, we have f(t) = \lambda e^{-\lambda t}

Where we have a failure rate = 10% for 1000 hours, we have(based on online resource);

P(t \leq 1000) = \int\limits^{1000}_0 {\lambda e^{-\lambda t}} \, dt = \dfrac{e^{1000\lambda}-1}{e^{1000\lambda}} = 0.1

e^(1000·λ) - 0.1·e^(1000·λ) = 1

0.9·e^(1000·λ) = 1

1000·λ = ㏑(1/0.9)

λ = 1.054 × 10⁻⁴

Hence the mean time to fail, E = 1/λ = 1/(1.054 × 10⁻⁴) = 9491.22 hours

The standard deviation = √(1/λ)² = √(1/(1.054 × 10⁻⁴)²)) = 9491.22 hours

b) Here we have to integrate from 5000 to ∞ as follows;

p(t>5000) = \int\limits^{\infty}_{5000} {\lambda e^{-\lambda t}} \, dt =\left [  -e^{\lambda t}\right ]_{5000}^{\infty} = e^{5000 \lambda} = 0.5905

(c) The Poisson distribution is presented as follows;

P(x = 3) = \dfrac{\lambda ^x e^{-x}}{x!}  = \frac{(1.0532 \times 10^{-4})^3 e^{-3} }{3!}  = 3.915\times 10^{-12}

p(x = 3) = 3.915 × 10⁻¹²

d) Where at least 2 components fail in one half hour, then 1 component is expected to fail in 15 minutes or 1/4 hours

The Cumulative Distribution Function is given as follows;

p( t ≤ 1/4) CDF = 1 - e^{-\lambda \times t} = 1 - e^{-1.054 \times 10 ^{-4} \times 1/4} = 2.63 \times 10 ^{-5}.

4 0
3 years ago
Other questions:
  • What are the causes of kickback on a table-saw?
    13·1 answer
  • Run the program and observe the output to be: 55 4 250 19. Modify the numsInsert function to insert each item in sorted order. T
    14·1 answer
  • Which two is right about febuary 14
    7·2 answers
  • In the 5 Code of Federal Regulations (C.F.R.), it is recommended that an individual has security awareness training before s/he
    8·2 answers
  • What causes decay in the amplitudes of vibration?
    11·1 answer
  • I want to explain what 2000 feet looks like to young children so that they can imagine it in class
    12·1 answer
  • What's the best way to plan an organized​
    7·1 answer
  • Safety-in engineering as with everything else is all about trying to maximize or create the hazards involved with what you are d
    6·2 answers
  • Zachary finished an internship as a Software Quality Assurance Engineer. For which job is he best qualified?
    8·2 answers
  • Connect wires to make the correct logic outputs.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!