We are given a trapezoid TRHY.
Height of the trapezoid = 13 units.
b1 = 21 units and
Area = 215 units squares.
We need to find the length of b2.
We know formula for area of a trapezoid.

Plugging values in formula.
215 =
(21+b2)× 13.
215 = 6.5(21+b2)
Dividing both sides by 6.5, we get

33.08 = 21+b2.
Subtracting 21 from both sides, we get
33.08-21 = 21-21+b2
b2 = 12.08.
<h3>Therefore, length of b2 is 12.08 units.</h3>
3/12 = 1/4
If simplified then second option
Answer:
m=3/4
Step-by-step explanation:
first, let's put the line 4x+3y=9 from standard form (ax+by=c) into slope-intercept form (y=mx+b)
we have the equation 4x+3y=9
subtract 4x from both sides
3y=-4x+9
divide by 3
y=-4/3x+3
perpendicular lines have slopes that are negative and reciprocal. If the slopes are multiplied together, the result is -1
so to find the slope of the line perpendicular to the line y=-4/3x+3, we can take the slope of y=-4/3x+3 (-4/3) multiply it by a variable (this is our unknown value), and have that set to -1
(m is the slope value)
-4/3m=-1
multiply by -3/4
m=3/4
therefore the slope of the perpendicular line is 3/4
hope this helps!! :)