m = 5 kg
a = 2 m/s²
to find the force that accelerates the 4 kg object @ 2 m/s²
F = ma = 5 kg x 2 m/s² = 10 N
To find what acceleration 10 N would give a 20 kg object
a = F/m = 10 N/20 kg = 0.5 m/s
Answer:
The diameter of the bull-wheel is 3.82
Explanation:
Given that,
Velocity = 2.0 m/s
Angular velocity = 10 rev/m


We need to calculate the diameter of bull-wheel
Using formula of angular velocity


Put the value into the formula


The diameter of the bull-wheel



Hence, The diameter of the bull-wheel is 3.82 m.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The answer is a
Explanation:
The explanation is shown on the second uploaded image
Answer:
The amount of energy carried by a wave is related to the amplitude of the wave
Explanation:
A high energy wave is characterized by a high amplitude; a low energy wave is characterized by a low amplitude. The energy imparted to a pulse will only affect the amplitude of that pulse.
Hope this helped!!!
Answer:
m₁ / m₂ = 1.3
Explanation:
We can work this problem with the moment, the system is formed by the two particles
The moment is conserved, to simulate the system the particles initially move with a moment and suppose a shock where the particular that, without speed, this determines that if you center, you should be stationary, which creates a moment equal to zero
p₀o = m₁ v₁ + m₂ v₂
pf = 0
m₁ v₁ + m₂ v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂= - (-6.2) / 4.7
m₁ / m₂ = 1.3
Another way to solve this exercise is to use the mass center relationship
Xcm = 1/M (m₁ x₁ + m₂ x₂)
We derive from time
Vcm = 1/M (m₁ v₁ + m₂v₂)
As they say the velocity of the center of zero masses
0 = 1/M (m₁ v₁ + m₂v₂)
m₁ v₁ + m₂v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂ = 1.3