Answer:
Explanation:
Given that,
B(t) = B0 cos(ωt) • k
Radius r = a
Inner radius r' = a/2 and resistance R.
Current in the loop as a function of time I(t) =?
Magnetic flux is given as
Φ = BA
And the Area is given as
A = πr², where r = a/2
A = πa²/4
Then,
Φ = ¼ Bπa²
Φ(t) = ¼πa²Bo•Cos(ωt)
Then, the EMF is given as
ε(t) = -dΦ/dt
ε(t) = -¼πa²Bo • -ωSin(ωt)
ε(t) = ¼ωπa²Bo•Sin(ωt)
From ohms law,
ε = iR
Then, i = ε/R
I(t) = ¼ωπa²Bo•Sin(ωt) /R
This is the current induced in the loop.
Check attachment for better understanding
Something super duper uper stuper luper nuper tuper zuper yuper fuper guper huper kuper juper wuper special
The periodic table is in increasing atomic mass. Hope this helped.
Answer:
to overcome the out of friction we must increase the angle of the plane
Explanation:
To answer this exercise, let's propose the solution of the problem, write Newton's second law. We define a coordinate system where the x axis is parallel to the plane and the other axis is perpendicular to the plane.
X axis
fr - Wₓ = m a (1)
Y axis
N-
= 0
N = W_{y}
let's use trigonometry to find the components of the weight
sin θ = Wₓ / W
cos θ = W_{y} / W
Wₓ = W sin θ
W_{y} = W cos θ
the friction force has the formula
fr = μ N
fr = μ Wy
fr = μ mg cos θ
from equation 1
at the point where the force equals the maximum friction force
in this case the block is still still so a = 0
F = fr
F = (μ mg) cos θ
We can see that the quantities in parentheses with constants, so as the angle increases, the applied force must be less.
This is the force that balances the friction force, any force slightly greater than F initiates the movement.
Consequently, to overcome the out of friction we must increase the angle of the plane
the correct answer is to increase the angle of the plane
Reflection from such a rough surface is called diffuse reflection and appears matte