Using Pythagorean theorem, we can justify our answer.
if c^2 = a^2 + b^2 then triangle is right one,
if c^2 > a^2 + b^2 then triangle is obtuse and
if c^2 < a^2 + b^2 then triangle is acute triangle.
Here a=8, b=11 and c=16
Put these values in the equation
16^2 = 8 ^2 + 11^2
256 = 64 +121
256> 185
So here c^2 > a^2 + b^2 Which means triangle is obtuse triangle.
Answer: Obtuse Triangle
Answer:
-1280
Step-by-step explanation:
There are 2 ways you could do this. You could just do the question until you come to the end of f(4). That is likely the simplest way to do it.
f(1) = 160
f(2) = - 2 * f(1)
f(2) = -2*160
f(2) = -320
f(3) = -2 * f(2)
f(3) = -2 * - 320
f(3) = 640
f(4) = - 2 * f(3)
f(4) = - 2 * 640
f(4) = - 1280
I don't know that you could do this explicitly with any real confidence.
Answer:
1.5974
Step-by-step explanation:
Check the picture below
if that red segment, GJ, is parallel to the AE base segment of the triangle, then, the segment GJ is the midsegment of the triangle, and by the side-splitter theorem, those two triangles are similar.
Answer:
La mediana de un conjunto de números es el número del medio del conjunto (después de que los números se hayan ordenado de menor a mayor).
Step-by-step explanation:
Digamos que tienes estos números, 4, 7, 2, 9, 7, 6 y 4. primero, los pones en orden de menor a mayor (2, 4, 4, 6, 7, 7, 9), y luego usted determina qué número está en el medio, que es 6.