Answer:
– 2.5 m/s²
Explanation:
We have,
• Initial velocity, u = 180 km/h = 50 m/s
• Final velocity, v = 0 m/s (it stops)
• Time taken, t = 20 seconds
We have to find acceleration, a.
a = (v ― u)/t
a = (0 – 50)/20 m/s²
a = –50/20 m/s²
a = – 5/2 m/s²
a = – 2.5 m/s² (Velocity is decreasing) [Answer]
Answer:
true
Explanation:
The law of conservation of charge states that whenever electrons are transferred between objects, the total charge remains the same.
Answer:
460.52 s
Explanation:
Since the instantaneous rate of change of the voltage is proportional to the voltage in the condenser, we have that
dV/dt ∝ V
dV/dt = kV
separating the variables, we have
dV/V = kdt
integrating both sides, we have
∫dV/V = ∫kdt
㏑(V/V₀) = kt
V/V₀ = 
Since the instantaneous rate of change of the voltage is -0.01 of the voltage dV/dt = -0.01V
Since dV/dt = kV
-0.01V = kV
k = -0.01
So, V/V₀ = 
V = V₀
Given that the voltage decreases by 90 %, we have that the remaining voltage (100 % - 90%)V₀ = 10%V₀ = 0.1V₀
So, V = 0.1V₀
Thus
V = V₀
0.1V₀ = V₀
0.1V₀/V₀ = 
0.1 = 
to find the time, t it takes the voltage to decrease by 90%, we taking natural logarithm of both sides, we have
㏑(0.01) = -0.01t
So, t = ㏑(0.01)/-0.01
t = -4.6052/-0.01
t = 460.52 s
4x + 4 < 4x + 3 (expand it)
4 < 3 (cancel 4x on both sides)
Since 4 < 3 is not true there is no solution.
Answer: NO SOLUTION.
Answer:
: It Decreases.
As the spacecraft gets farther and farther from Earth, the gravitational
forces between the spacecraft and the Earth decrease.
Explanation: