The work done by tension force of 14N applied on the laptop by a rope as it moves 2.0 mm up the slope is 0.028 J
W = F d cos θ
W = Work done
F = Force
d = Displacement
θ = Angle between force and displacement vector
F = 14 N
d = 2 mm = 0.002 m
θ = 0
W = 14 * 0.002 * 1
W = 0.028 J
Work done is the change in energy of an object. So if an object moves a certain distance, work is done on the object. If the force and displacement are perpendicular to each other there is no work done on the object.
Therefore, the work done by tension on the laptop is 0.028 J
To know more about work done
brainly.com/question/12834956
#SPJ4
Acceleration of the both masses tied together= 6m/s²
Explanation:
The force is given by F= ma
so 5= m1 (8)
m1=0.625 Kg
for m2
5=m2 (24)
m2=0.208 kg
now total mass= m1+m2=0.625+0.208
Total mass=M=0.833 Kg
now F= ma
5= 0.833 (a)
a= 5/0.833
a=6m/s²
Answer:
Explanation:
The trick is in finding the volume.
Final Volume = 26.64
Initial Volume=<u>20.92</u> Subtract
Metal Volume 5.72 cm^3
Density = mass / volume
Density = 72.17 / 5.72
Density = 12.617
Answer:
V = 10.88 m/s
Explanation:
V_i =initial velocity = 0m/s
a= acceleration= gsinθ-
cosθ
putting values we get
a= 9.8sin25-0.2cos25= 2.4 m/s^2
v_f= final velocity and d= displacement along the inclined plane = 10.4 m
using the equation


v_f= 7.04 m/s
let the speed just before she lands be "V"
using conservation of energy
KE + PE at the edge of cliff = KE at bottom of cliff
(0.5) m V_f^2 + mgh = (0.5) m V^2
V^2 = V_f^2 + 2gh
V^2 = 7.04^2 + 2 x 9.8 x 3.5
V = 10.88 m/s