Work is defined as a Newton * meter.
(1)
Cheetah speed: 
Its position at time t is given by
(1)
Gazelle speed: 
the gazelle starts S0=96.8 m ahead, therefore its position at time t is given by
(2)
The cheetah reaches the gazelle when
. Therefore, equalizing (1) and (2) and solving for t, we find the time the cheetah needs to catch the gazelle:



(2) To solve the problem, we have to calculate the distance that the two animals can cover in t=7.5 s.
Cheetah: 
Gazelle: 
So, the gazelle should be ahead of the cheetah of at least

<h3>Question 1</h3>
Answer
option C) velocity
Explanation
acceleration = Δv ÷ Δt
<h3>Question 2</h3>
Answer
option C) m/s²
Explanation
Δv ÷ Δt
= m/s ÷ s
= m/s x 1/s
= m/s²
<h3>Question 3</h3>
Answer
option B) velocity has both direction and speed.
That is why velocity can be negative but speed can not and velocity is rate of change of displacement where as speed is rate of change of distance.
<h3>
Answer:</h3>
1.3 Amps
<h3>
Explanation:</h3>
<u>We are given;</u>
A circuit with resistors, R1 and R2
R1 = 7 Ω
R2 = 11 Ω
Voltage = 24 V
We are required to calculate the current in the circuit.
<h3>Step 1: We need to find the effective resistance.</h3>
When resistors are arranged in series, the effective resistance is calculated by;
Rt = R₁ + R₂ + R₃ + ..........Rₙ
Therefore;
Total resistance = 7 + 11
= 18 Ω
<h3>Step 2: Calculate the current in the circuit</h3>
From the ohm's law;
V = IR
Rearranging the formula;
I = V/R
Thus;
I = 24 V ÷ 18 Ω
= 1.333 Amps
= 1.3 Amps
Thus, the current in the circuit is 1.3 Amps