The correct answers would be B, and d
Answer:
Its length is measured to be 0.5 m
Explanation:
From theory of relativity (mass variation), we know that:
m = mo/√(1-v²/c²)
Where, m = relative mass
and, mo = rest mass
The momentum of stick while moving, will be:
P = mv
but, it is given in the form of rest mass as:
P = 2(mo)v
thus, by comparison;
2(mo)v = mv
using value of m from theory of relativity;
2(mo)v = (mo)v/√(1-v²/c²)
√(1-v²/c²) = 1/2 ______ eqn(1)
Now, for relativistic length (L), we have the formula from same theory of relativity;
L = (Lo)√(1-v²/c²)
The rest length (Lo) of meter stick is 1 m, and the remaining term on right side √(1-v²/c²), known as Lorentz Factor, can be given by eqn (1), as equal to 1/2.
Thus,
L = (1 m)(1/2)
<u>L = 0.5 m</u>
Answer:
b. 9.5°C
Explanation:
= Mass of ice = 50 g
= Initial temperature of water and Aluminum = 30°C
= Latent heat of fusion = 
= Mass of water = 200 g
= Specific heat of water = 4186 J/kg⋅°C
= Mass of Aluminum = 80 g
= Specific heat of Aluminum = 900 J/kg⋅°C
The equation of the system's heat exchange is given by

The final equilibrium temperature is 9.50022°C
Answer:
white star
Explanation:
because it is the hottest form of a star
Answer:
When an electromagnetic wave passes from space to matter, some part of the energy is absorbed by the matter and it increases its energy. The wave may reflect and some part may pass through the matter depending on the amount of energy they have. The amplitude of the wave decreases if some parts of it are reflected.