Answer: 2HCO + 4O → H2 + 2CO3
Explanation: Oxomethyl + Oxygen = Dihydrogen + Carbon Trioxide
Reaction Type: SINGLE REPLACEMENT
***If you found my answer helpful, please give me the brainliest, please give a nice rating, and the thanks ( heart icon :) ***
<span>Report your numerical answer in units of nm. Use significant figur</span>
Answer:
5.7 moles of O2
Explanation:
We'll begin by writing the balanced decomposition equation for the reaction. This is illustrated below:
2KClO3 —> 2KCl + 3O2
From the balanced equation above,
2 moles of KClO3 decomposed to produce 3 moles of O2.
Next, we shall determine the number of mole of O2 produced by the reaction of 3.8 moles of KClO3.
Since 100% yield of O2 is obtained, it means that both the actual yield and theoretical yield of O2 are the same. Thus, we can obtain the number of mole of O2 produced as follow:
From the balanced equation above,
2 moles of KClO3 decomposed to produce 3 moles of O2.
Therefore, 3.8 moles of KClO3 will decompose to produce = (3.8 × 3)/2 = 5.7 moles of O2.
Thus, 5.7 moles of O2 were obtained from the reaction.
86 percent is the percent yield for this experiment if he expected to produce 5g of product.
Explanation:
Given that:
mass of test tube = 5 grams
mass of test tube + reactant is 12.5 grams
mass of reactant = ( mass of test tube + reactant ) - (mass of test tube)
mass of reactant = 12.5 -5
= 7.5 grams
when 7.5 grams of reactant is heated mass of test tube was found to be 9.3 grams.
so mass of product formed = 9.3 - 5
= 4. 3 grams of product is formed (actual yield)
However, he expected the product to be 5 grams (theoretical yield)
Percent yield =
x 100
putting the values in the formula:
percent yield =
x 100
= 86 %
86 percent is the percent yield.
Answer:
Na + CaSO4 = Na2SO4 + Ca
Explanation:
single displacement (substitution)