Answer:
Explanation:
As the circuit is parallel, then there is no effect of other branches as the potential difference across each arm is same.
Answer:
The heat energy required is, E = 2200 J
Explanation:
Given,
The mass of paraffin, m = 2 Kg
The energy required to raise the temperature of the paraffin by 200° C = 44000 J
Then the heat energy required to raise the temperature of the paraffin by 10° C is given by,
Since 44000 J raises temperature by 200° C, then
E = 44000 J / 20
= 2200 J
Hence, the energy required to raise the temperature of the paraffin by 10° C is, E = 2200 J
The answer would be a radio wave
By law of refraction we know that image position and object positions are related to each other by following relation

here we know that



now by above formula


so apparent depth of the bottom is seen by the observer as h = 3.39 cm