It takes the shape of the cup and it can be sucked through a straw
Answer:
the correct one is: a diffraction limits the resolving power to approximately the size of the wavelength of the light used
Explanation:
To be able to solve two structures with a light source, the Rayleigh criterion must be met that stable the two structures are solved when the first minimum of diffraction at one point is in the code of the first maximum of the other point
Using this criterion we can find an expression for the first minimization of the diffraction spectrum m = 1
sin θ tea = λ / a
now the structure of the comatose has a separation of around 1 nm and the wavelength of visible light ranges from 400 to 700 nm, when substituting we find
sin θ = 400/1 10
sin θ = 400
sin θ = 700/1
sin θ = 700
These values are neither impossible since the sin function is bounded between -1 to 1, so we cannot see the diffraction
When reviewing the different statements, the correct one is: a diffraction limits the resolving power to approximately the size of the wavelength of the light used:
The compound is an indicator
Answer:

Explanation:
Gauss's Law says that the electric flux
through a closed surface is directly proportional to the charge
inside it. More precisely,

This means what is outside this closed surface
does not contribute to the flux through it because field lines that go in must come out, <em>resulting a zero flux from an external charge. </em>
In our context, this means the charge
which is outside the sphere will have zero flux through the surface; therefore, Gauss's law will only be concerned with charge
which is inside the sphere; Hence,

Solving for
gives



which is the charge inside the sphere.
Answer: a. This would be exciting, but not surprising. Heat from Martian volcanoes may well be enough to melt water under the Mars' surface.
Explanation: It was recently observed by a team of geological researchers that there exist some activity at the crust of the planet mars. This activity are volcanic in nature and estimated to be about 10kilometers large. Also this volcanic eruptions in the planet mars core are described as among the largest in our solar system. Therefore it won't be a surprise that Heat from Martian volcanoes may well be enough to melt water under the Mars' surface.