Answer:
Hi
before I answer a question I think very deeply and try my best, hope it helps...
As you know there are many different types of systems. For example, The solar system, galaxies, quantum systems, atoms, molecules, orchestras, nervous system, etc, things you may not have even considered a system. To get to the basis of a system we must first understand what a system is then we will show some examples. A system is a group of Parts (parts could mean anything even dark energy and dark matter) that work together to accomplish something. For example, your body has many many trillions of cells that all try to accomplish the functions of humans which include thinking, moving, breathing, circulation, etc. Cells in turn are a system that have counterparts called organelles that accomplish harvesting energy, making new proteins, getting rid of waste, and so on. These are some systems which we highly dependent upon.
Well i hope it helped
Spiky Bob your answerer
In solids, particles or atom are very closely arranged compared to gasses. When these particles are arranged in such proximity, vibrations from sound are very easily transmitted from one particle to another in the solid. Hence, the sound vibrations can travel through the solid medium more quickly than through a gas medium.
Speed of sound also depends on its frequency and the wavelength.
Answer:
Proportional
Explanation:
The conditions that must be met to produce SHM are;
-The restoring force must be proportional to the displacement and act opposite to the direction of motion with no drag forces or friction.
- The frequency of oscillation does not depend on the amplitude.
They did not believed Galileo's discoveries because religiouse reasons the preast said that all the bible is true but Galileo despised it.
Answer:
a) m=20000Kg
b) v=0.214m/s
Explanation:
We will separate the problem in 3 parts, part A when there were no coals on the car, part B when there is 1 coal on the car and part C when there are 2 coals on the car. Inertia is the mass in this case.
For each part, and since the coals are thrown vertically, the horizontal linear momentum p=mv must be conserved, that is,
, were each velocity refers to the one of the car (with the eventual coals on it) for each part, and each mass the mass of the car (with the eventual coals on it) also for each part. We will write the mass of the hopper car as
, and the mass of the first and second coals as
and
respectively
We start with the transition between parts A and B, so we have:

Which means

And since we want the mass of the first coal thrown (
) we do:



Substituting values we obtain

For the transition between parts B and C, we can write:

Which means

Since we want the new final speed of the car (
) we do:

Substituting values we obtain
