Answer:
Part a)
V = 18.16 V
Part b)

Part c)
P = 672 Watt
Part d)
V = 5.84 V
Part e)

Explanation:
Part a)
When battery is in charging mode
then the potential difference at the terminal of the cell is more than its EMF and it is given as

here we have



now we have

Part b)
Rate of energy dissipation inside the battery is the energy across internal resistance
so it is given as



Part c)
Rate of energy conversion into EMF is given as



Now battery is giving current to other circuit so now it is discharging
now we have
Part d)



Part e)
now the rate of energy dissipation is given as



Answer:
The inside Pressure of the tank is 
Solution:
As per the question:
Volume of tank, 
The capacity of tank, 
Temperature, T' =
= 299.8 K
Temperature, T =
= 288.2 K
Now, from the eqn:
PV = nRT (1)
Volume of the gas in the container is constant.
V = V'
Similarly,
P'V' = n'RT' (2)
Also,
The amount of gas is double of the first case in the cylinder then:
n' = 2n
![\]frac{n'}{n} = 2](https://tex.z-dn.net/?f=%5C%5Dfrac%7Bn%27%7D%7Bn%7D%20%3D%202)
where
n and n' are the no. of moles
Now, from eqn (1) and (2):


Explanation:
Acceleration is change in velocity over change in time:
a = Δv / Δt
a = (10 m/s - 25 m/s) / (240 s - 0 s)
a = -0.0625 m/s²
So the car decelerates at 0.0625 m/s².
So there is a decimal after the last zero and it looks like this 5098000. You have to move the decimal point six back to get in between the five and the zero which looks like this 5.098000
<span>Scientific notation is the way that scientists easily handle very large numbers or very small numbers. For example, instead of writing 0.0000000056, we write 5.6 x 10^<span>9</span>.</span>
Being that we moved the decimal six places back the answer is 5.098 x 10^6