Answer:
0.453 m/s
Explanation:
Assuming the handle has diameter of 0.4 m while inner part diameter is 0.1 m then the circumference of outer part is
where d is diameter and subscript h denote handle. By substituting 0.4 for the handle's diameter then cirxumference of outer part is 
The rate of rotation will then be 1.81/1.256=1.441 rev/s
Similarly, circumference of inner part will be
where subscript i represent inner. Substituting 0.1 for inner diameter then

The rate of rotation found for outer handle applies for inner hence speed will be 0.3142*1.441=0.453 m/s
The answer is Basal Metabolic Rate. It is the total
amount of energy expressed in calories that an individual needs to keep the
body working at rest. Some of those progressions are blood circulation, breathing,
cell growth, controlling body temperature, nerve and brain function, and tightening
of muscles.
So 10 gallons of gas would let you travel 300 Miles.
x gallons = 50 Miles
10 : 300 :: x : 50
x = 500/300
x = 1.66667 gallons.
So, the car would run 10 - 1.6666 gallons = 8.33 gallons.
After that, the warning light turns ON!
Hope this helps!!
Answer:
Human digestive system involves gastrointestinal tract and other components such as liver, intestines, glands, mouth, stomach, gallbladder. The Human Digestive System Process has six primary tasks: ingestion, motility, secretion, digestion, absorption, excretion.
Explanation:
Hope it helps
Answer: the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
Explanation:
Given that;
mass of vehicle m = 1000 kg
for a low speed test; V = 2.5 m/s
bumper maximum deflection = 4 cm = 0.04 m
First we determine the energy of the vehicle just prior to impact;
W_v = 1/2mv²
we substitute
W_v = 1/2 × 1000 × (2.5)²
W_v = 3125 J
now, the the effective design stiffness k will be:
at the impact point, energy of the vehicle converts to elastic potential energy of the bumper;
hence;
W_v = 1/2kx²
we substitute
3125 = 1/2 × k (0.04)²
3125 = 0.0008k
k = 3125 / 0.0008
k = 3906250 N/m
Therefore, the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m